a 2 + b 2 = 5 2 + 12 2 = 13 2 ⇒ a 2 + b 2 = c 2 ⇒ ∆ABC vuông tại C
Bán kính đường tròn ngoại tiếp tam giác ABC là R = c 2 = 13 2 = 6,5 .
Chọn C.
a 2 + b 2 = 5 2 + 12 2 = 13 2 ⇒ a 2 + b 2 = c 2 ⇒ ∆ABC vuông tại C
Bán kính đường tròn ngoại tiếp tam giác ABC là R = c 2 = 13 2 = 6,5 .
Chọn C.
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác ABC có a = 12, b = 16, c = 20. Tính diện tích S của tam giác, chiều cao ha, bán kính R, r của các đường tròn ngoại tiếp, nội tiếp tam giác và đường trung tuyến ma của tam giác
Cho tam giác ABC có a = 5, b = 7, c = 8. Bán kính đường tròn ngoại tiếp tam giác bằng
A. 7 3
B. 7 3 3
C. 7 5 3
D. 7 2 3
Ví dụ 1. Tam giác ABC có các cạnh a = 13 m, b = 14 m và c = 15 m a) Tính diện tích tam giác ABC ; b) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC. Ví dụ 2. Tam giác ABC có cạnh a = 2√3 , cạnh b = 2 và C (mũ) = 30⁰. Tính cạnh c, góc A và diện tích tam giác đó. Ví dụ 3. Cho tam giác ABC có cạnh a = 24cm b = 13cm và c = 15vm .Tính diện tích S của tam giác và bán kính r của đường tròn nội tiếp, 1. Cho tam giác ABC vuông tại A,B = 58⁰ và cạnh a = 72cm Tính C (mũ), cạnh bạcạnh c và đường cao ha 2. Cho tam giác ABC biết các cạnh a = 52.1 cm, b = 85 cm và c = 54 cm. Tính các góc A(mũ), B(mũ) và C(mũ).
Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên gần với số nào nhất?
A. 6
B. 7
C. 8
D. 9
Cho tam giác ABC cân đỉnh A, ^A=α, AB=m, D là một điểm trên cạnh BC sao cho BC=3BD
a) Tính BC, AD
b) Chứng tỏ rằng đường tròn ngoại tiếp các tam giác ABD, ACD là bằng nhau. Tính cosα để bán kính chúng bằng 1/2 bán kính R của đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC biết cạnh a = 137,5cm, ∠B = 83o và ∠C = 57o. Tính góc A, bán kính R của đường tròn ngoại tiếp, cạnh b và c của tam giác.
Cho tam giác ABC có AB = 9, BC = 12 và góc B = 60°. Tính độ dài đường trung tuyến xuất phát từ đỉnh C, bán kính đường tròn ngoại tiếp tam giác R
Cho tam giác ABC có góc B = 45 độ, cạnh AC = \(2\sqrt{2}\) cm. Bán kính R của đường tròn ngoại tiếp tam giác ABC bằng