a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
1. Cho tam giác abc nhọn nội tiếp đường tròn tâm O. Hai đường cao BE, CF của tam giác ABC cắt nhau tại H
a) Chứng minh tứ giác BFEC nội tiếp đường tròn
b) Chứng minh rằng AF.AB=AE.AC
c) Kẻ đường kính AD của đường tròn tâm O. Chứng minh tứ giác BHCD là hình bình hành
Cho tam giác ABC (AB < AC) có 3 góc nhọn nội tiếp trong đường tròn tâm O bán kính R. Gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC
a) Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn
b) Vẽ đường cao AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau .Suy ra AB.AC=2R.AD
Cho tam giác ABC có ba góc nhọn AB<AC 3 đường cao AD, BE, CF cắt nhau ở H
1) chứng minh tứ giác BFEC nội tiếp. Xác định tâm o của đường tròn ngoại tiếp tứ giác này
2) Gọi I là trung điểm của AH. Chứng minh IE là tiếp tuyến của đường tròn o
3) Vẽ CI cắt đường tròn o tại M khác C, EF cắt AD tại K. Chứng minh ba điểm B, K, M thẳng hàng
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O). Vẽ ba đường cao AD;BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AFHE và tứ giác BFEC là các tứ giác nội tiếp đường tròn
b) Đường thẳng EF cắt BC tại I. Chứng minh IE.IF=IB.IC
c) AI cắt đường tròn (O) tại K. Gọi M là trung điểm BC. Chứng minh ba điểm K,H,M thẳng hàng
Cho tam giác ABC không cân có các góc nhọn, nội tiếp đường tròn tâm (O) các đường cao BE và CF của tam giác ABC cắt nhau tại H.CO kéo dài cắt đường tròn(O) tại điểm thứ thứ hai D.
1.Chứng minh tứ giác BFEC nội tiếp đường tròn.
2.Gọi M là trung điểm của AB.CM các điểm H,M,D thẳng hàng.
Giả sử góc ACB=60o.Chứng minh CH=OC.
Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
cho tam giác nhọn abc có hai đường cao be và cf cắt nhau tại h
a) chứng minh tứ giác aehf nội tiếp đường tròn
b) chứng minh góc fec + góc abc=180
c)gọi d là giao điểm của hai đường thẳng ah và bc. chứng minh h là tâm đường tròn nội tiếp tam giác def
Cho tam giác ABC nhọn nội tiếp đường tròn (O; R), Ba đường cao AD, BE, CF của tam giác ABC cùng đi qua trực tâm 11. Kẻ đường kính AK của đường tròn (O; R). Gọi M là hình chiếu vuông góc của C trên AK. 1) Chứng minh tứ giác BFEC nội tiếp được đường tròn. 2) Chứng minh AB. AC = 2RAD và MD || BK. 3) Giả sử BC là dây cung cố định của đường tròn (O; R) và A di động trên cung lớn BC. Tìm vị trí điểm A để diện tích tam giác AEH lớn nhất Bài V(0,5 điểm):
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ