Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp tronh đường tròn (O,R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn (O). Gọi E,F là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC.
a) chứng minh các tứ giác ABHF và BMFO nội tiếp.
b)chứng minh HE//BD.
c) chứng minh SABC= AB.AC.BC trên 4R (SABC là diện tích tam giác ABC)
Cho tam giác ABC . Trên tia đối của tia AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD (H ∈ BC, K ∈ BD)
a) Chứng minh rằng OH > OK.
b) So sánh hai cung nhỏ BD và BC.
Từ điểm A nắm ngoài (O, R) vẽ tiếp tuyến AB, dây cung BC vuông góc OA tại H. a) Chứng minh H là trung điểm BC và AC là tiếp tuyến (O) b) Vẽ đường kính BD của (O), AD cắt (O) tại K. Chứng minh AH. AO = AK. AD
Cho đường tròn (O), từ điểm A ngoài (O) vẽ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm). Gọi H là giao điểm OA và BC. Vẽ đường kính BD của (O). Đường thẳng qua C vuông góc với AB cắt OA tại M, I là trung điểm OC. Đường thẳng vuông góc với BD tại D cắt BC tại E. Chứng minh OE vuông góc AD
1 . Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BD;
CE và AF của tam giác ABC cắt nhau tại điểm H. Chứng minh rằng:
1) Góc DEC = Góc DBC.
2) CE.HC + BD.HB = BC 2
3) Đường thẳng DE vuông góc OA
2 ,.
Cho đường tròn (O;13 cm) , dây AB=24cm
a) Tính khoảng cách từ tâm O đến dây AB?
b) Gọi M là điểm thuộc dây AB. Qua M, vẽ dây CD vuông góc với dây AB tại điểm M. Xác định vị trí điểm M trên dây AB để AB=CD
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O) .
a) Chứng minh rằng: OA vuông góc với BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC.
Chứng minh rằng: AE. AD = AH. AO.
c) Chứng minh rằng: .góc AHE = góc OED
d) Gọi r là bán kính của đường tròn nội tiếp tam giác ABC. Tính độ dài đoạn thẳng BD theo R, r.
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ hai tiếp tuyến AB, AC với đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O) .
a) Chứng minh rằng: OA vuông góc với BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC.
Chứng minh rằng: AE. AD = AH. AO.
c) Chứng minh rằng: .góc AHE = góc OED
d) Gọi r là bán kính của đường tròn nội tiếp tam giác ABC. Tính độ dài đoạn thẳng BD theo R, r.
Cho tam giác ABC nhọn nội tiếp đường tròn (O;R). Hai đường cao BD và CE của tam giác cắt nhai tại H. Gọi M là trung điểm BC. Gọi I là trung điểm DE. Chứng minh góc DAM = góc DAI
Cho đường tròn (O;R), dây BC cố định (BC<2R) và điểm A di động trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Các đường cao BD và CE của tam giác ABC cắt nhau tại H.
a.CMR tứ giác ADHE nội tiếp.
b. Giả sử góc BAC=60°, hãy tính khoảng cách từ tâm O đến cạnh BC theo R
c.CMR đường thẳng kẻ qua A và vuông góc với DE luôn đi qua 1 điểm cố định.
d. Phân giác góc ABD cắt CE tại M , cắt AC tại P. Phân giác góc ACE cắt BD tại N , cắt AB tại Q . Tứ giác MNPQ là hình gì ? Vì sao ?