Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) . Phân giác của các góc ABC vàACB lần lượt cắt đường tròn (O) tại Evà F . Gọi N là giao điểm của OF và AB;M là giao điểm của OE và AC.
1. chứng minh AMON là tứ giác nội tiếp.
2 gọi I là giao điểm của BE và CF;D là điểm đối xứng qua I của BC chứng minh ID vuông góc với MN.
3.Tìm điều kiện của tam giác ABC để D nằm trên đường tròn (O ; R)
GIÚP MÌNH VỚI M.N
1, Cho (O;R) đường kính BC = 2R, \(A\in\left(O\right)\). Kẻ OE vuông góc AB, OF vuông góc AC. Chứng minh rằng: \(3R< BE+CF< 4R\)
2. Cho tam giác ABC nhọn nội tiếp (O;R). Kẻ các tia AO, BO, CO cắt BC, CA, AB lần lượt tại D, E, F. Chứng minh rằng: \(\frac{1}{AD}+\frac{1}{BE}+\frac{1}{CF}< \frac{3}{R}\)
Cho tam giác ABC nội tiếp đường tròn (O;R). Gọi D,E,F lần lượt là giao điểm của AO,BO,OC với BC,AC,AB. CMR: \(OE+OF+OD\ge\frac{3R}{2}\)
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh : AD vuông góc BC
b) Chứng minh EFDO là tứ giác nội tiếp
c) Trên tia đối của tia DE lấy điểm L sao cho DL = DF. Tính số đo góc BLC
d) Gọi R, S lần lượt là hình chiếu của B,C lên EF. Chứng minh DE + DF = RS và AH.AD=AE.AC
Cho tam giác ABC có ba góc nhọn (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC cad AB lần lượt tại E và F. Gọi H là giao điểm của BE cà CF. AH cắt cạnh BC tại D.
a) Chứng minh các tứ giác BFEC, BFHD, CEHD nội tiếp đường tròn.
b) Qua O kẻ đường thẳng vuông góc với BC cắt DE và DF lần lượt tại G và I. Chứng minh BGCI là hình thoi
cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn (O;R). CÁc đường cao AD,BE,CF cát nhau tại H
a) chứng minh rằng : -tứ giác ABDE nội tiếp được đường tròn
-chứng minh AE.AC=AF.AB
- chứng minh OA\(\perp\)EF
-gọi K là giao điểm của 2 đường thẳng BC và EF. Đường thẳng đi qua F song song vói AC cắt AK, AD lần lượt tại M và N .chứng minh MF=NF
Cho tam giác ABC có ba góc nhọn và AB < AC, nội tiếp (O; R) Vẽ đường kính AD của (O). Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC)
1, Chứng minh: Bốn điểm A, B, H, E cùng thuộc một đường tròn
2, Gọi M là trung điểm của BC. Chứng minh: HE // CD và ME = MF
3, Gọi S là diện tích tam giác ABC. Chứng minh: 4S.R = AB.AC.BC
cho tam giác ABC( AB<AC) có 3 góc nhọn . đường tròn tâm O đường kính BC cắt AB;AC lần lượt tại F;E.gọi H là giao điểm của BE và CF .F là giao điểm của AH và BC
a) chứng minh AD vuông góc với BC và AH.AD=AE.AC
b) chứng minh EFDO nội tiếp
c) trên tia đối của tia DE lấy L sao cho DL=DF.TÍNH số đo góc BLC
d) GỌI R;S lần lượt là hình chiếu của B;C lên È chứng minh DE+DF=RS
AI giúp câu d với
Xin các cao thủ võ lâm giúp em giải bài này
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O). Đường tròn đường kính AB cắt BC, AC lần lượt tại D và E. Gọi H là giao điểm của AD và BE
a\Chứng minh tứ giác CEHD nội tiếp
b\Đường thẳng qua E và vuông góc với AB cắt AD tại L. F là giao điểm CH và AB. Chứng minh AL×AB= Ah×AF
C\ Gọi S là giao điểm của OA và EL, M là Trung điểm của SH. Chứng minh M,E,F thẳng hàng