a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc ADE
=>DE//Ax
=>OA vuông góc DE
a: góc ADH+góc AEH=180 độ
=>ADHE nội tiếp
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc ADE
=>DE//Ax
=>OA vuông góc DE
1.Cho tam giác ABC nhọn. Kẻ các đường cao BD, CE cắt nhau tại H. Chứng mình rằng: a,AEHD là tứ giác nội tiếp b,BEDC là tứ giác nội tiếp. Tìm tâm đường tròn ngoại tiếp c, Góc EBD=ECD d,AH vuông góc với BC
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao BM và CN cát nhau tại I. Chứng minh rằng: a,AMIN là một tứ giác nội tiếp b, Góc NAI=NMI c,AI cắt BC tại H. Chứng minh HA là tia phân giác của góc NHM
cho tam giác ABC có 3 góc nhọn AB<AC, đường cao AH.Từ Ha kẻ HM và HN lần lượt vuông góc với AB và AC.
a.cm. AMHN là tứ giác nội tiếp
b. cm ˆAMN=ˆABC
c. gọi O là tâm đường tròn ngoại tiếp tam giác ABC có đường kính AD cắt MN tại K.cm AH là tiếp tuyến của đường tròn ngoại tiếp tam giác HKD.
cho tam giác ABC có 3 góc nhọn AB<AC, đường cao AH.Từ Ha kẻ HM và HN lần lượt vuông góc với AB và AC.
a.cm. AMHN là tứ giác nội tiếp
b. cm ˆAMN=ˆABC
c. gọi O là tâm đường tròn ngoại tiếp tam giác ABC có đường kính AD cắt MN tại K.cm AH là tiếp tuyến của đường tròn ngoại tiếp tam giác HKD.
cho tam giác ABC có 3 góc nhọn nội tiếp .đường tròn tâm <o>kẻ các đường cao BD,CE cắt nhau tại H
a/chứng minh BCDE và ADHE là tứ giác nội tiếp
b/chứng minhAD.AC=AE.AB
c/kẻ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC.chứng minh rằng Ax // ED
d/gọi F la điểm đối xứng với H qua BC .chứng minh rằng F nằm trên đường tròn tâm O
cho tam giác ABC có các góc đều nhọn, góc A=450 . Vẽ các đường cao BD và CE của tam giác ABC. Gọi H là giao điểm của BD và CE.
a) CM: tứ giác ADHE NỘI TIẾP
b/ CM HD=DC
C/ Tính tỉ số DE:BC
d/ Gọi O tâm đường tròn ngoại tiếp AB. CM : OA VUÔNG GÓC DE.
Cho tam giác ABC nhọn nội tiếp đường tròn (O), đường cao AN, CK của tam giác ABC cắt nhau tại H
a, cm: tứ giác BKHM là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BKHM
b, cm: góc KBH= góc KCA
c, gọi E là trung điểm AC, cm: KE là tiếp tuyến của (I)
d, đường tròn (I) cắt (O) tại M. Chứng minh BM vuông góc ME
cho tam giác ABC có 3 góc nhọn AB<AC, đường cao AH.Từ Ha kẻ HM và HN lần lượt vuông góc với AB và AC.
a.cm. AMHN là tứ giác nội tiếp
b. cm ˆAMN=ˆABC
c. gọi O là tâm đường tròn ngoại tiếp tam giác ABC có đường kính AD cắt MN tại K.cm AH là tiếp tuyến của đường tròn ngoại tiếp tam giác HKD
Cho tam giác ABC nhọn nội tiếp đường tròn (O), 2 đường cao BE và CF của tam giác ABC cắt nhau tại H. Chứng minh: a. Tứ giác BCEF nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BCEF. b. CM: AE.AC = AF.AB c. Tia AO cắt đường tròn (O) tại P, cắt EF tại Q. CM AP vuông góc với EF
Cho tam giác abc có các góc nhọn nội tiếp đường tròn (o). Hai đường cao Bd và CE cắt nhau tại H. a) Chứng minh: Các tứ giác ADHE, BEDC nội tiếp. b) Chứng minh: Góc EAH = Góc ECB c) Từ A kẻ tiếp tuyến xy với đường tròn. Chứng minh: xy//DE