Xét ΔAHC vuông tại H và ΔBHC vuông tại H có
CA=CB
CH chung
Do đó: ΔAHC=ΔBHC
Xét ΔAHC vuông tại H và ΔBHC vuông tại H có
CA=CB
CH chung
Do đó: ΔAHC=ΔBHC
cho tam giác ABC cân tại A kẻ AH vuông góc với BC(H thuộc BC)
a, Chứng minh: tam giác AHC= tam giác AHC
b, Kẻ HD vuông góc với AB(D thuộc AB), HE vuông góc với AC(E thuộc AC): Chứng minh tam giác HDE Cân
c,Nếu cho góc A=120 độ thì tam giác HDE trở thành tam giác gì? Vì sao?
cho tam giác ABC cân tại A ( A< 90 độ). kẻ BH vuông góc AC ( H thuộcAC ) C vuông góc AB ( K thuộc AB ) . BH và CK cắt nhau tạ E
A) chứng minh tam giác BHC =tam giác CKP
B) chứng minh tam giác EBC cân
Cho tam giác ABC cân tại A ( AB=AC) .Kẻ AH vuông góc BC (H thuộc BC ) ,HE vuông góc AB , HF vuông góc AC .
Chứng minh :
a) Tam giác AHB = tam giác AHC
b) Tam giác HEB = tam giác HFC
c) AH vuông góc EF
Cho tam giác ABC cân tại A ( Â<90°). Kẻ BH vuông góc AC ( H thuộc AC) , CK thuộc AB ( K thuộc AB).BH và CK cắt nhau tại E. a) Chứng minh tam giác BHC = tam giác CKB. b) Chứng minh tam giác ABC cân tại E
Bài 1: Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB và BD và CE cắt nhau tại H. Chứng minh rằng:
a) Tam giác ABD = tam giác ACE.
b) Tam giác BHC cân.
c) ED//BC
cho tam giác ABC cân có AB=AC=4cm, BC=6cm. Kẻ AH vuông góc BC (H thuộc BC)
a) Chứng minh HB=HC
b) Tính độ dài AH
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE cân
Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC (H thuộc BC).
a/ Chứng minh Tam giác AHB = Tam giác AHC. Từ đó suy ra HB = HC
b/ Biết AH = 8 cm, BC = 12 cm. Tính độ dài AC.
c/ Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh Tam giác HDE cân.
cho tam giác ABC cân tại A, kẻ đường cao AH (H thuộc BC)
a/ chứng minh : tam giác AHB= tam giác AHC
b/chứng minh : HB=HC và góc BAH=góc CAH
c/ cho BC=20cm, AB = 8cm.tính độ dài đoạn thẳng AH
d/ kẻ HD vuông góc AB (D thuộc AB), HE vuông góc AC ( E thuộc AC). chứng minh rằng tam giác HDE là tam giác cân
e/ chứng minh rằng DE//BC
Cho tam giác ABC cân tại A ( góc A < 90° ) . Kẻ BD vuông góc với AC ( D thuộc AC ) , CE vuông góc với AB ( E thuộc AB ) , BD và CE cắt nhau tại H .
a ) Chứng minh : Tam giác ABD = tam giác ACE
b ) Chứng minh : Tam giác BHC cân
c ) Chứng minh : ED song song với BC
d ) AH cắt BC tại K , trên tia HK lấy điểm M sao cho K là trung điểm của HM . Chứng minh : Tam giác ACM vuông .