cho tam giác ABC cân tại B , kẻ tia phân giác AD (D THUỘC BC) trên AC lấy điểm E sao cho AB=AE
a , Cho AB = 3cm , AC = 5cm , tính độ dài BC
b,Chứng ming tam giác ADI vuông tại E
c, Kẻ BHE vuông góc vs AC , chúng minh BE là tia phân giác của góc HBC
d, Gọi O là giao điểm của BH và AD , cm tam giác BOD cân
Sửa đề: ΔABC vuông tại B
a: Ta có: ΔBAC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=5^2-3^2=16\)
=>\(BC=\sqrt{16}=4\left(cm\right)\)
b: Sửa đề: ΔADE vuông tại E
Xét ΔBAD và ΔEAD có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔBAD=ΔEAD
=>\(\widehat{ABD}=\widehat{AED}\)
mà \(\widehat{ABD}=90^0\)
nên \(\widehat{AED}=90^0\)
=>ΔAED vuông tại E
c: Sửa đề: Kẻ BH vuông góc AC
Xét ΔABE có AB=AE
nên ΔABE cân tại A
Ta có: \(\widehat{CBE}+\widehat{ABE}=\widehat{ABC}=90^0\)
\(\widehat{HBE}+\widehat{AEB}=90^0\)(ΔHEB vuông tại H)
mà \(\widehat{ABE}=\widehat{AEB}\)(ΔABE cân tại A)
nên \(\widehat{CBE}=\widehat{HBE}\)
=>BE là phân giác của góc HBC
d:
Ta có: \(\widehat{BOD}=\widehat{AOH}\)(hai góc đối đỉnh)
\(\widehat{AOH}+\widehat{DAC}=90^0\)(ΔHAO vuông tại H)
Do đó: \(\widehat{BOD}+\widehat{DAC}=90^0\)
Ta có: \(\widehat{BDO}+\widehat{BAD}=90^0\)(ΔBAD vuông tại A)
\(\widehat{BOD}+\widehat{DAC}=90^0\)
mà \(\widehat{BAD}=\widehat{DAC}\)
nên \(\widehat{BDO}=\widehat{BOD}\)
=>ΔBDO cân tại B