Cho tam giác ABC cân và hai đường trung tuyến BM, CN cắt nhau tại K
a, CM: tam giác BNC=tam giác CMB
b, CM tam giác BKC cân tại K
c, CM BC<4KM
Cho tam giác ABC cân tại A và 2 đường trung tuyến BM CN cát nhau tại K
a) Cm BC< 4KM
Tam giác ABC cân tại A. Đường trung tuyến BM và Cn cắt nhau tại G. CMR:
a, BM=CN
b, Tam giác BGN= tam giác CGM
c, AG là đường trung trực của MN
d, MN // BC
e, AB + 2BC> AI + 2BM
f, MN < ( BM + CN)/2
g, AG cắt BC tại I. B là trung điểm của AK, C là trung điểm của AQ, E là trung điểm của KQ. CM : A; I; E thẳng hàng
Mọi người làm hộ em phần e, f, g vs ạ
Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K. Chứng minh : BC < 4KM
Cho ∆ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K.
a) Chứng minh ∆BNC = ∆CMB.
b) Chứng minh AK ^ BC.
c) Gọi H là giao điểm của AK và BC. Tính AH biết AB = 5cm, BC = 6cm.
cho tam giác ABC cân tại A , có BM va CN là 2 đường trung tuyến a CM tam giác ABM tam giác CAN b MN song song BC c BM cắt CN tạiK , D là trung điểm BC . cm A,K,D thẳng hàng
cho tam giác ABC cân tại A , có BM va CN là 2 đường trung tuyến a) CM tam giác ABM=tam giác CAN b) MN song song BC c) BM cắt CN tạiK , D là trung điểm BC . cm A,K,D thẳng hàng
cho \(\Delta ABC\), cân tại A và 2 đường trung tuyến BM , CN cắt nhau tại K .
CM: a, BM=CN
b, AK là đường trung tuyến của MN
c,BC<\(4\cdot KM\)
Cho tam giác ABC cân tại A. có AB = AC = 34 cm, BC = 32 cm. Từ A vẽ AH song song BC tại H.
a) Chứng minh tam ABH= tam giác ACH
b) Vẽ đường trung tuyến BM của tam giác ABC, BM cắt AH tại G. Chứng minh AH là đường trung tuyến và G là trọng tâm tam giác ABC