Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho tam giác ABC cân tại A. Trên Tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD. Gọi M là trung điểm BC. Chứng minh rằng ba điểm A, M, I thẳng hàng.

Cao Minh Tâm
21 tháng 5 2017 lúc 4:01

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Xét ΔABM và ΔACM có:

AB = AC ( giả thiết)

BM = CM ( vì M là trung điểm BC )

AM chung

⇒ ΔABM = ΔACM (c.c.c)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180o

⇒ ∠AMB = ∠AMC = 90o hay AM ⊥ BC

Chứng minh tương tự ta có: IM ⊥ BC

⇒ A, I, M thẳng hàng (Qua 1 điểm ta kẻ được duy nhất 1 đường thẳng vuông góc với đường thẳng cho trước)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Le bao nguyen
Xem chi tiết
Hoa Thiên Cốt
Xem chi tiết
Lê Tú
Xem chi tiết
Châu nguyên huyền trân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
nhunhugiahan
Xem chi tiết
Trần Tuyết Như
Xem chi tiết
Pham Trong Bach
Xem chi tiết