Cho đường tròn (O), đường kính BC. Lấy 1 điểm A trên đường tròn (O) sao cho AB>AC. Từ A kẻ AH vuông góc vs BC( H thuộc BC). Từ H vẽ HE vuông góc với AB và HF vuông góc với AC (E thuộc AB và F thuộc AC).
a, chứng minh rằng AEHF là hình chữ nhật và OA vuông góc với EF
b, Đường thẳng EF cắt đường tròn tại P và Q (E nằm giữa P và F)
Chứng minh AP^2=AE*AB. suy ra APH là tam giác cân
c, Gọi D là giao điểm của PQ và BC, K là giao điểm của AD và đường tròn (O) ( K khác A). Chứng minh rằng AEFK là tứ giác nội tiếp
d, Gọi I là giao điểm của KF và BC. Chứng minh IH^2=IC*ID
cho tam giác ABC có ba góc nhọn .Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E và D. gọi giao điểm của CE và BD là H
a) chứng minh tứ giác AEHD nội tiếp
b) kẻ AF vuông góc với BC tại F. Chứng minh A, H, F thẳng hàng
c) đường thẳng EF cắt đường tròn tại điểm thứ 2 là K. chứng minh DK// AF
Cho tam giác ABC vuông tại A . Từ trung điểm E của cạnh AC kẻ EF vuông góc với AC tại F
a) Cho BC = 20cm, sinC = 0,6. Giải tam giác ABC;
b) Chứng minh rằng : AC2 = 2CF.CB
c) Chứng minh : AF = BC.cosC
Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC, kẻ EF vuông góc với BC tại F
a) Cho BC = 20 cm và sinC = 0,6. Giải tam giác ABC
b) Chứng minh AC2 = \(2CF\times CB\)
c) Chứng minh AF = BC ✖ cosC
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho tam giác ABC có ba góc nhọn (AB<AC). Đường tròn tâm O đường kính BC cắt các cạnh AB, AC lần lượt tại D, E. Gọi H là giao điểm của BE và CD , F là giao điểm của AH và BC. a) Tính số đo góc BDC và chứng minh AF vuông tại BC b) Gọi K là trung điểm của AH. Chứng minh KE là tiếp tuyến của đường tròn (O) c) Gọi N là giao điểm của đoạn thẳng AF và đường tròn (O). Chứng minh FN bình-FH bình=2FH.HK
(Mong mọi người giúp mình ạ)
Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC tại F.
a) Cho BC = 20cm, sinC = 0,6. Giải tam giác ABC;
b) Chứng minh rằng: AC2 = 2CF.CB
c) Chứng minh: AF = BE.cosC
cho (o;r) đường kính ab . lấy c trên tiế/p tuyến tại a của (o) sao ac = 2r . gọi d là giao điểm bc và (o) . a)chứng minh tam giác abc cân b) kẻ dây ae vuông góc oc tại h . Chứng minh ce là tiếp tuyến của (o;r) c) f là giao điểm be và cd . Tính góc ofb
Cho tam giác ABC vuông tại A , đường cao AH vuông góc với BC tại H. Gọi E,F lần lượt là hình chiếu của H trên AB và AC. Gọi M là trung điểm của BC, kẻ AM cắt EF tại K. Cm : a, tứ giác AEHF là hình chữ nhật. B, AE×AB= AF×AC. C AM vuông góc EF tại K .
Giúp mk câu B,C với ạ 💖