xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)