Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
LuKenz

Cho tam giác ABC cân tại A nội tiếp đường tròn (O), cạnh bên bằng b, đường cao AH=h. Tính bán kính đường tròn tâm O

Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 20:32

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{BC}{2}\cdot h\)

Bán kính là:

\(R=\dfrac{a\cdot b\cdot c}{4\cdot S}=\dfrac{b\cdot b\cdot BC}{4\cdot\dfrac{BC\cdot h}{2}}=\dfrac{b\cdot b\cdot BC}{2\cdot BC\cdot h}=\dfrac{b^2}{2h}\)

Phía sau một cô gái
22 tháng 8 2021 lúc 20:34

Ta có: O là trọng tâm của ABC AO là đường trung tuyến của ABC AO là đường cao của ABC (  Trong tam giác cân đường đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao và đường trung trực )

⇒ HB = HC = \(\dfrac{BC}{2}\)

⇒ OH = \(\dfrac{AH}{3}=\dfrac{h}{3}\) ( trong tam giác 3 đường trung tuyến cắt nhau tại 1 điểm gọi là trọng tâm của tam giác và cách đáy 1 khoảng = \(\dfrac{1}{3}\) chiều dài mỗi đường )

Xét tam giác vuông ABH có

\(BH^2=AB^2+AH^2=b^2+h^2\)

Xét tam giác vuông OBH có

BO = R = \(\sqrt{BH^2+OH^2}=\sqrt{b^2-h^2+\dfrac{h^2}{9}}=\dfrac{1}{3}\sqrt{9b^2-8h^2}\)


Các câu hỏi tương tự
LuKenz
Xem chi tiết
Cổn Cổn
Xem chi tiết
LuKenz
Xem chi tiết
Võ Thị Mỹ Hạnh
Xem chi tiết
Võ Thị Mỹ Hạnh
Xem chi tiết
....
Xem chi tiết
LuKenz
Xem chi tiết
Đào Phú Đức
Xem chi tiết
The Strongest of CoC
Xem chi tiết