a: góc DFB=góc ACB
góc DBF=góc ACB
=>góc DFB=góc DBF
=>ΔDBF cân tại D
b: Xét tứ giác DCEF có
DF//CE
DF=CE
=>DCEF là hình bình hành
a: góc DFB=góc ACB
góc DBF=góc ACB
=>góc DFB=góc DBF
=>ΔDBF cân tại D
b: Xét tứ giác DCEF có
DF//CE
DF=CE
=>DCEF là hình bình hành
Cho tam giác ABC vuông tại A. Lấy điểm D trên cạnh ABC ( bất kì ) lấy điểm E trên tia đối của tia CA sao cho CE = ED. Kẻ CF song song AC ( DF €AC )
a) tam giác DBF là tam giác gì? Vì sao ?
b) Cm tứ giác DCEF là hình bình hành.
Cho tam giác ABC cân tại A , lấy điểm D bất kỳ trên AB ,lấy điểm E trên tia đối của tia CA sao cho CE bằng BD từ D kẻ đường thẳng A song song với AC cắt BC tại F a.chứng minh MN=PQ b,MNPQ là hình bình hành
Cho tam giác ABC, trên tia đối của BC lấy điểm D, trên tia đối của CD lấy điểm E sao cho BD=BC=CE. Qua D kẻ đường thẳng song song với AB cắt AC taih H. Qua E kẻ dường thẳng song song với AC cắt AB tại K. Chúng giao nhau tại I. a. Tứ giác PHAC là hình gì? Vì sao? b. Tia IA cát BC tại M. Chứng minh MB=MC. c. Tìm điều kiện của tam giác ABC để DHKE là hình thang cân.
Cho tam giác ABC. Trên tia đối của BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD=BC=CE. Qua D kẻ đường thẳng song song ới AB cắt AC ở H. Qua E kẻ đường thẳng song song với AC cắt AB ở K,chúng cắt nhau ở I.
a) Tứ giác BHKC là hình gì? Vì sao ?
b) Tia IA cắt BC ở M. Chứng minh MB=MC
c) Tìm điều kiện của tam giác ABC để tứ giác DHKE là hình thang cân
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Qua D kẻ đường thẳng song song với AC cắt BC tại E. Trên tia đối của tia CA lấy điểm F sao cho CF= BD. Gọi I là trung điểm của EC. Chứng minh D, I, F thẳng hàng.
1 . Cho tam giác ABC cân tại A. Gọi D, E, P lần lượt là trung điểm của AB, AC
và BC. Trên tia đối của tia CE lấy điểm M sao cho CM = CE. Chứng minh:
a) Tứ giác BDEP là hình bình hành.
b) Tứ giác CDPM là hình bình hành.
c) P là trọng tâm của tam giác BDM
2 .
Cho tam giác nhọn ABC. Gọi điểm M là trung điểm của đoạn thẳng BC. Từ điểm M vẽ các đường thẳng song song với AC và AB, các đường thẳng song song đó lần lượt cắt AB và AC tại D và E.
1) Chứng minh tứi giác ADME là hình bình hành.
2) Tam giác ABC cần thêm điều kiện gì thì tứ giác ADME là hình chữ nhật, hình vuông?
3) Chứng minh diện tích của tam giác ADE = \(\frac{1}{4}\) diện tích tam giác ABC.
Cho tam giác ABC cân tại A.Trên cạnh AB lấy D và trên tia đối của tia CA lấy E sao cho BD=CE.Gọi I là giao điểm của BC và DE.Từ D kẻ tia song song với AC cắt BC ở K
a,CM: tam giác BDK cân
b,Tứ giác DCEK là hình gì? Vì sao
c,So sánh DI và IE , KI và IC
BÀI 1: Cho tam giác ABC. Trên tia đối của tia BA lấy D, trên tia đối của tia CA lấy E sao cho BD = CE = BC. Gọi M là giao điểm của BE và CD đường thẳng qua M song song với tia phân giác của góc BAC cắt AC ở F. Chứng minh rằng AB = CF.
BÀI 2:Cho tam giác đều ABC, điểm M thuộc cạnh BC. Gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng với M qua AC. Vẽ hình bình hành MDNE. CMR: AN // BC.
Bài 14: Cho tam giác ABC vuông cân tại A. Trên đoạn thẳng AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với AB cắt BI tại K.
A, cm tứ giác EKFC là hình bình hành
B, Qua I kẻ đường thẳng vuông góc với AF cắt BD tại M