Cho tam giác ABC cân tại A. Trên tia đối với tia BC lấy điểm M, trên tia đối của tia CB lấy N sao cho BM=CN
a/Cmr: tam giác AMN là tam giác cân
b/ Kẻ BH vuông góc với AM( H thuộc AM), kẻ CK vuông góc với AN (K thuộc AN). Chứng minh rằng: BH=CK
c/Cmr: HK//BC
d/ Gọi O là giao điểm của BH và CK. CMR: tam giác BOC cân
e/ Gọi D là trung điểm của BC. cmr: 3 điểm A,D,O thẳng hàng
Cho tam giác ABC có AB=AC; trên tia đối BC lấy D; trên tia đối CB lấy E sao cho BD=CE
a)Chứng minh rằng AD=AE
b)Qua B kẻ BH vuông góc với AD; qua C kẻ CK vuông góc với AE, chứng minh BH=CK
c)Gọi giao điểm của BH và CK là I, gọi M là trung điểm BC, chứng minh 3 điểm A,M,I thẳng hàng
Tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD. Kẻ CK vuông góc với AE.
c) Gọi O là giao điểm của HB và KC. Chứng minh: OBC cân.
d) Chứng minh: AO là tia phân giác của góc DAE
e) Gọi I là trung điểm của BC. Chứng minh: A, I, O thẳng hàng.
Tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD=CE . Kẻ BH vuông góc với AD . Kẻ CK vuông góc với AE .chứng minh
a.BH=CK
b.tam giác ABH=tam giác ACK
c. gọi O là giao điểm của HB và KC . cm tam giác OBC cân
d.cm AO là phân giác của góc DAE
e. gọi I là trung điểm của BC . cm A,I ,O thẳng hàng
cho tam giác ABC cân tại A trên tia đối của tia BC lấy điểm D trên tia đối của tia CB lấy điểm E. sao cho BD = CE. Kẻ BH vuông góc AD tại H, CK vuông góc AE tại K
Gọi I là giao điểm của BH và CK. Chứng minh AI là đường trung trực của DE
Cho tam giác ABC cân ở A .Trên tia đối của tia BC láy điểm M, trên tia đối của tia CB lấy điểm N sao cho BM= CN. Kẻ BH vuông góc với AM, kẻ CK vuông góc với AN. Chứng mình: a, BH=CK
b,Tam giác AMN cân
c,gọi O là giao điểm của HB và KC. Chứng minh mọi điểm thuộc đoạn thẳng AO cách đều hai cạnh của ▫BAC, cách đều hai mút của đoạn thẳng BC
Ai GIẢI NHANH GIÚP E Vs Ạ,EM CẢM ƠN🥰
Cho tam giác ABC có AB = AC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. a) Chứng minh: AD = AC. b) Kẻ BH ^ AD ( H Î AD ), kẻ CK ^ AE ( K Î AE). Chứng minh rằng BH = CK và HK//BC c) Gọi O là giao điểm của BH và CK. M là trung điểm BC. Chứng minh rằng ba điểm A, M, O thẳng hàng.
ko vẽ hình
Cho \(\Delta\)\(ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. CMR: \(\Delta\)\(ABH\) = \(\Delta\)\(ACK\)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD (H thuộc AD), kẻ CK vuông góc với AE ( K thuộc AE ). Kẻ BM vuông góc với AE (M thuộc AE), kẻ CN vuông góc với AD. Chứng minh rằng:
a) tam giác ADE là tam giác gì?;
b) BH = CK, BM = CN;
c) tam giác AHB = tam giác AKC;
d) BC song song với HK.