Cho tam giác ABC cân tại A ,kẻ AH vuông góc với BC ( H thuộc BC )
a) Chứng minh góc BAH = góc ACH
b) Cho AH = 3cm , BC = 8cm . Tính độ dài của cạnh AC
c) Kẻ HE vuông góc với AB , HD vuông góc với AC . Chứng minh AE = AD
d) Chứng ming ED song song với BC
Giúp mình vs lm ơn , đang lm bt tết nên cần gấp ạ , xin chân thành cảm ơn :3
đề bài có lỗi ko bạn ?
a, Vì tam giác ABC cân tại A
AH là đường cao nên đồng thời là đường phân giác
=> ^BAH = ^CAH
b, Vì tam giác ABC cân tại A nên AH đồng thời là đường trung tuyến
=> HB = HC = BC/2 = 4 cm
Theo định lí Pytago tam giác AHC vuông tại H
\(AC=\sqrt{AH^2+HC^2}=\sqrt{9+16}=5cm\)
c, Xét tam giác AEH và tam giác ADH ta có :
^EAH = ^DAH (cmt)
AH_chung
^AEH = ^ADH = 900
Vậy tam giác AEH = tam giác ADH ( ch - gn )
=> AE = AD ( 2 cạnh tương ứng )
d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)vì AE = AD ; AB = AC
=> ED // BC