Cho tam giác ABC cân tại A . Gọi D,E,F lần lượt là trung điểm của BC,AB,AC. Lấy điểm G đối xứng của điểm D qua F
a) Chứng minh tứ giác ABDF là hình thang , tứ giác BEFC là hình thang cân
b) Chứng minh tứ giác ABDG là hình bình hành
c) Chứng minh tứ giác AFDE là hình thoi
d) Chứng minh tứ giác ADCG là hình chữ nhật
Gọi H,K lần lượt là trung điểm BE,CF. Cho HK=12cm , AD=15cm. Tính độ dài đoạn thẳng BD và chu vi hình thang BEFC.
Cho tam giác ABC cân tại A . Gọi D,E,F lần lượt là trung điểm của BC, AB,AC.
a) Tính DE biết AC= 6cm.
b) Gọi I là điểm đối xứng của D qua F. Tứ giác ADCI là hình gì. Vì sao? .
c) Tam giác ABC cần điều kiện gì để tứ giác AEDI là hình thang cân? Vì sao.
giải thik rõ ràng giúp mik với ạ, mik xin chân thành cam rơn, mong mn giúp mik ạ, 5h mik đi hc ròi ạ, mik cam rơn rất nhìu
cho tam giác ABC cân tại A. Kẻ đường trung tuyến AM. Gọi E,F lần lượt là trung điểm của AB,AC. Chứng minh a, AM vuông góc với BC b, ME=AB/2 c,Tứ giác AMEF là hình thoi d, tứ giác BEFC là hình thang cân e,trên tia đối của tia EM lấy H sao cho EM=EH.Tứ giác AHBM là hình gì vì sao f,tứ giác AHMC là hình bình hành g, các đường thẳng HC,EF,AM cắt nhau tại 1 điểm
Cho tam giác ABC cân tại A có E, F lần lượt là trung điểm của AB, AC.
a) Chứng minh EF//BC và tứ giác BEFC là hình thang cân. Tính độ dài đoạn EF bik BC=3cm.
b) Gọi M là điểm đối xứng của E qa F. Chứng Minh AMCE là hình bình hành.
c) Gọi G là trung điểm của EC. Chứng minh B,G,M thẳng hàng.
d) BF cắt AM tại H. Chứng Minh tam giác HBC vuông.
Giải giùm mình với...mơn nhìu!!
Cho tam giác ABC cân tại A gọi E,F,H lần lượt là trung điểm của AB,AC,BC
a. Chứng minh tứ giác BEFC là hình thang cân
b. Gọi D là điểm đối xứng với H qua F. Chứng minh tứ giác AHCD là hình chữ nhật
c. EF cắt AH tại I. Chứng minh 3 điểm B,I,D thẳng hàng
TOÁN HÌNH HỌC LỚP 8 HK1
Cho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG.
Cho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG(Chỉ cần câu c)
cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh : Tứ giác MNCB là hình thang cân.
b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?
c) Chứng minh : N là trọng tâm của tam giác CMD.
d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.
Cho tam giác ABC cân tại A. Lấy M, N lần lượt là trung điểm của AB, AC
a. CM tứ giác BMNC là hình thang cân
b. cm tam giác AMN cân
c. Lấy D đối xứng B quan N, E đối xứng C qua M. cm tứ giác ADCB là hình bình hành
d. cm A là trung điểm của ED
e. Gọi H là giao điểm của CM và BN. Nối AH cắt BC tại Q. Lấy F thuộc BC sao cho CF = (1/4)BC, lấy K giao điểm của MN và AH. cm CK, QN, AF đồng quy