Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC)
a)Chứng minh ∆AHB = ∆AHC
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH
c) Gọi E là trung điểm AC, CD cắt AH tại G. Chứng minh B, G, E thằng hàng.
d) Chứng minh chu vi ∆ABC > AH + 3BG
A) chứng minh tam giác ahb = tam giác ahc
B) từ h kẻ đường thẩng song song với ac, cắt ab tại d. Chứng minh tam giác adh cân đó suy ra ad =dh
C) gọi e trung điểm ac, cd cất ah tại g. Chứng minh b, g, e thẳng hàng
D) chứng minh chu vi tam giác abc > ah + 3bg
Bài 4.Cho tam giác ABC cân tại A, đường cao AH ( H thuộc BC ).
a, Chứng minh rằng tam giác ABC=tam giác AHC
b, Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD=DH
c, Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng.
d, Chứng minh chu vi tam giác ABC>AH+3GB
help me
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC)
a)Chứng minh ∆AHB = ∆AHC
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH
c) Gọi E là trung điểm AC, CD cắt AH tại G. Chứng minh B, G, E thằng hàng.
d) Chứng minh chu vi ∆ABC > AH + 3BG
ai làm trước mình cho 1 tick
Cho △ABC cân tại A đường cao AH (H∈BC).
a)Chứng minh △AHB=△AHC
b)Từ H kẻ đường song song với BC ,cát AB tại D .Chứng minh AD=DH
c)Dọi E là trung điểm của AC,CD cắt AH tại G .Chứng minh B,G,E thẳng hàng
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC)
a)Chứng minh ∆AHB = ∆AHC
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH
c) Gọi E là trung điểm AC, CD cắt AH tại G. Chứng minh B, G, E thằng hàng.
d) Chứng minh chu vi ∆ABC > AH + 3BG
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC)
a)Chứng minh ∆AHB = ∆AHC
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh AD = DH
c) Gọi E là trung điểm AC, CD cắt AH tại G. Chứng minh B, G, E thằng hàng.
Cho tam giác ABC cân tại A, đường cao AH (H ∈ BC).
a) Chứng minh ∆AHB = ∆AHC.
b) Từ H kẻ đường thẳng song song với AC, cắt AB tại D. Chứng minh ∆ADH cân, từ đó suy ra AD = DH
c) Gọi E là trung điểm AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng.
d) Chứng minh: chu vi ∆ABC > AH + 3BG
Cho tam giác ABC cân tại A, đường cao AH. Từ H kẻ đường thẳng Hx song song với AC, Hx cắt AB tại D.
1. Chứng minh tam giác ADH cân và D là trung điểm của AB.
2. Gọi E là trung điểm của AC, CD cắt AH tại G. Chứng minh B, G, E thẳng hàng và tính hiệu độ dài
AG – GH biết rằng AC = 10cm, HC = 6cm.
3. Gọi p là chu vi tam giác ABC. Chứng minh p > AH + 3BG.