a) Ta có: \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)
\(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AD=AE
Xét ΔABE và ΔACD có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
AE=AD(cmt)
Do đó: ΔABE=ΔACD(c-g-c)
a)Vì AB=AC(gt)mà D, E lần lượt là trung điểm của AB, AC⇒AD=AE=BD=CE
Xét △ABE và △ACD có:
AB=AC(gt), AE=AD, ∠A:góc chung
⇒ΔABE=ΔACD(c.g.c)
b) Vì ΔABE= ΔACD⇒BE=CD(2 cạnh tươ Vì ng ứng)
c) Vì ΔABE= ΔACD
⇒ ∠ABE=∠ACE,∠AEB=∠ADC(1)(các cặp góc tương ứng)
Mà ∠AEB kề bù với ∠BEC
⇒ ∠ AEB+ ∠ BEC=180°(2)
∠ADC kề bù với ∠BDC
⇒ ∠ ADC+ ∠ BDC=180°(3)
Từ (1)(2)(3) ⇒ ∠ BEC= ∠ BDC
Xét ΔBDK và ΔCEK có:
∠ ABE=∠ACD, ∠BDC=∠BEC, BD=CE(ở a)
⇒ΔBDK=ΔCEK(g.c.g)
⇒BK=CK(2 cạnh tương ứng)
⇒ΔKBC là tam giác cân tại K
d)Vì ΔBDK=ΔCEK⇒DK=DE(2 cạnh tương ứng)
Mà D∈AB, E∈AC
⇒AK là đường phân giác của ∠BAC