D nằm trên đường trung trực của AB
=>DA=DB(1)
D nằm trên đường trung trực của AC
=>DA=DC(2)
Từ (1),(2) suy ra DB=DC
D nằm trên đường trung trực của AB
=>DA=DB(1)
D nằm trên đường trung trực của AC
=>DA=DC(2)
Từ (1),(2) suy ra DB=DC
cho tam giác ABC cân tại A; góc A>90o các đường trung trực của AC và AB cắt nhau tại O và cắt BC tại D và E. Ch/m
a) OA là đường trung trực của BC
b) BD=CE
c) tam giác ODE cân
Cho tam giác ABC cân tại A có góc A=120 độ. Các đường trung trực của AB và AC cắt nhau tại O và cắt BC lần lượt tại E và F. Chứng minh:
a)AO là trung trực của BC
b)E,F là trọng tâm của tgAOB và AOC
c)BE=EF=FC
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Dựng D là điểm sao cho AB là trung trực của HD, dựng E là điểm sao cho AC là đường trung trực của HE. Nối D với E cắt AB tại I và cắt AC tại K. Chứng minh rằng HA là phân giác của góc HIK
Cho tam giác ABC vuông tại A, đường phân giác của góc B cắt AC tại H, kẻ HE vuông góc với BC, EH và AB cắt nhau tại I
a) Tam giác ABH = tam giác EBH
b) Cmr BH là đường trung trực của AE
c) Cm BH vuông góc với IC. Hỏi tam giác IBC là tam giác gì?
Bài 1: Cho tam giác ABC cân ở A. Đường trung trực của AC cắt AB ở D. Biết CD là đường phân giác của \(\widehat{ACB}\). Tính các góc của tam giác ABC
Cho tam giác ABC (AB<AC) trên cạnh AC lấy điểm M sao cho AB=MC, đường trung trực của BM và đường trung trực của AC cắt nhau tại O. chứng minh AO là tia phân giác của góc BAC
BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh: Tam giác ABM = tam giác ACM.
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.
Chứng minh: BH = CK.
c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.
Chứng minh: Tam giác IBM cân.
BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.
a) Tính độ dài cạnh AC.
b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.
Chứng minh: DC = DF.
c) Chứng minh: AE song song FC. ( AE // FC )
BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: Tam giác ABD = tam giác ACE.
b) Chứng minh: Tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.
Chứng minh: ECB^ = DKC^.
#helpme
#mainopbai
Bài 1: Cho tam giác ABC vuông tại A và có đường phân giác BE ( E € AC). Kẻ ED vuông góc BC ( D € BC)
a) CMR: Tam giác ABE = tam giác DBE
b) CMR: BE là đường trung trực của đoạn thẳng AD
c) Gọi F là giao của AB và DE. C/M AD song song FC
Bài 2: Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) chứng minh: AD = DH
b) so sánh độ dài cạnh AD và DC
c) chứng minh tam giác KBC là tam giác cân
Mình kẻ hình đc rồi... nhưng hôg zải đc... zúp mình vs
cho tam giác abc vuông tại a. kẻ đường AH vuông góc vs BC(H thuộc BC). các tia phân giác của góc HAC và AHC cắt nhau tại i. tia phân giác của HABcats BC ở D.cmr CI đi qua trung điểm AD
Cho tam giác ABC cân tại A (A là góc nhọn). Kẻ BD vuông AC ( D thuộc AC) , CE vuông AB ( E thuộc AB), BD và CE cắt nhau tại H
a) CHứng minh BD = CE
b) tam giác BHC cân
c) AH là đường trung trực của BC
d) trên tia BD lấy K sao cho D là trung điểm BK . So sánh góc ECB và góc DKC