Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Từ D kẻ đường vuông góc với BC cắt AB ở M, từ E kẻ đường vuông góc với BC cắt AC ở N . CMR MD=NE
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Từ D kẻ đường vuông góc với BC cắt AB ở M. Từ E kẻ đường vuông góc với BC cắt AC ở N
a) chứng minh MD=NE
b) MN cắt DE ở I. Chứng minh I là trung điểm của DE
c)Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB, hai đường này cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối củNa tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N chứng minh rằng BM=CN ;BC<MN; đường thẳng vuông góc với MN tại giao điểm MN và BC luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông cân tại A , trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E , sao cho BD =CE. Từ D, kẻ đường vuông góc với BC cắt AB ở M, từ E kẻ đường vuông góc với BC cắt AC ở N.
a, Chứng minh: MD=NE.
b, MN cắt DE ở I , chứng minh I là trung điểm của DE.
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N.
a. C/m MD=NE
b. MN cắt DE ở I.C/m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Cho tam giác ABC cân ở A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD CE. Từ D kẻ đường thẳng vuông góc với BC cắt AB tại M, từ E kẻ đường thẳng vuông góc với BC cắt AC ở N
.a. C m MD NE
b. MN cắt DE ở I.C m I là trung điểm của DE
c. Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường thẳng vuông góc với AB chúng cắt nhau tại O. Chứng minh AO là đường trung trực của BC
Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D sao cho BD < DC ( D khác B, C), trên tia đối của tia CB lấy điểm E sao cho BD = CE. Từ D kẻ đường vuông góc với BC cắt AB ở M, từ E kẻ đường vuông góc với BC cắt AC ở N. Đoạn thẳng MN cắt DE ở I. Chứng minh
1. Tam giác MDB = tam giác NEC
2. I là trung điểm của DE
3. BC < MN
Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
giúp mk với
Bài 2: Cho tam giác ABC cân ở A. Trên cạnh BC lấy D, trên tia đối của tia CB lấy E sao cho BD = CE. Từ D kẻ đường vuông góc với BC cắt AB ở M, từ E kẻ đường vuông góc với BC cắt AC ở N.
a) Chứng minh: MD = NE
b) MN cắt DE ở I. Chứng minh: I là trung điểm DE.
c) Từ C kẻ đường thẳng vuông góc với AC, từ B kẻ đường vuông góc với AB chúng cắt nhau ở O. Chứng minh: AO là phân giác góc BAC.
d) Chứng minh: AO là trung trực BC.