Lời giải:
1.
Vì $BD$ là tia phân giác góc $\widehat{B}$ nên:
$\frac{AD}{DC}=\frac{AB}{BC}$
$CE$ là tia phân giác $\widehat{C}$ nên:
$\frac{AE}{EB}=\frac{AC}{BC}$
Mà $AB=AC$ nên $\frac{AD}{DC}=\frac{AE}{EB}$. Theo định lý Talet đảo thì $ED\parallel BC$
Do đó $BEDC$ là hình thang. Mà $\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)
$\Rightarrow BEDC$ là htc.
2.
$BEDC$ là htc nên $BE=DC(1)$
$\frac{AD}{DC}=\frac{AB}{BC}\Rightarrow AD=\frac{AB.DC}{BC}$
$ED\parallel BC$ nên theo định lý Talet:
$\frac{ED}{BC}=\frac{AD}{AC}$
\(\Rightarrow ED=\frac{AD.BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AC}=\frac{AB.DC}{BC}.\frac{BC}{AB}=DC(2)\)
Từ $(1);(2)\Rightarrow BE=DC=ED$
3.
Xét tam giác $DBC$ và $ECB$ có:
$\widehat{DCB}=\widehat{EBC}$
$DC=EB$
$BC$ chung
$\Rightarrow \triangle DBC=\triangle ECB$ (c.g.c)
$\Rightarrow \widehat{B_1}=\widehat{C_1}$
$\Rightarrow \triangle BOC$ cân tại $O$
Do đó trung tuyến $OI$ đồng thời là đường cao
$\Rightarrow OI\perp BC(*)$
Mặt khác:
$\widehat{B_1}=\widehat{D_1}$ (so le trong)
$\widehat{C_1}=\widehat{E_1}$
$\Rightarrow \widehat{D_1}=\widehat{E_1}$
$\Rightarrow \triangle OED$ cân tại $O$
Do đó trung tuyến $OJ$ đồng thời là đường cao
$\Rightarrow OJ\perp ED(**)$
Từ $(*); (**)$ mà $ED\parallel BC$ nên $O, I, J$ thẳng hàng.
1) Xét ΔABC có
CE là đường phân giác ứng với cạnh AB
nên \(\dfrac{AE}{EB}=\dfrac{AC}{BC}\)(1)
Xét ΔABC có
BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)(cmt)
nên DE//BC(Định lí Ta lét đảo)
Xét tứ giác BEDC có DE//BC(cmt)
nên BEDC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
2) Ta có: \(\widehat{EDB}=\widehat{DBC}\)(hai góc so le trong, ED//BC)
mà \(\widehat{DBC}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{EBC}\))
nên \(\widehat{EBD}=\widehat{EDB}\)
Xét ΔEBD có \(\widehat{EBD}=\widehat{EDB}\)(cmt)
nên ΔEBD cân tại E(Định lí đảo của tam giác cân)
Suy ra: ED=EB=DC(đpcm)