Cho tam giác ABC có tia phân giác của góc A cắt BC tại D a) chứng minh AD vuông góc với BC b Vẽ be vuông góc với AC tại E ,BE cắt AD tại I trên tia AB lấy điểm F sao cho AF = AE ,chứng minh IF vuông góc với AB c)Chứng minh c,i,f thẳng hàng
Cho tam giác ABC có 3 góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H ( D,E,F lần lượt thuộc các cạnh BC, CA, AB). CMR:
a, AF.AB = AH.AD = AE.AC
b, H là giao điểm 3 đường phân giác trong tam giác DEF.
c, Gọi M,N,P,I,K,Q lần lượt là trung điểm của các cạnh BC, AC, AB, EF, ED, DF. CMR:
các đường thẳng MI, NQ, PK đồng quy
d, Gọi độ dài các đoạn thẳng AB, BC, CA lần lượt là a,b,c. Độ dài các đoạn thẳng AD, BE, CF là a', b', c'. Tìm GTNN của biểu thức \(\frac{\left(a+b+c\right)^2}{a'^2+b'^2+c'^2}\)
Cho tam giác nhọn ABC . Các đường cao AD,BE,CF cắt nhau tại H. Chứng minh rằng:
a) Tam giác AEF đồng dạng với tam giác ABC
b) BH.BE + CH.CF = BC2
c) AD.HD < BC2/4
d) Gọi I,K,Q,R lần lượt là chân các đường vuông góc hạ từ E xuống AB,AD ,CF,BC . Chứng minh bốn điểm I,K,Q,R cùng nằm trên một đường thẳng.
Cho tam giác ABC cân tại A, E thuộc AB. Trên tia đối tia CA lấy F sao cho CF=BE. Vẽ Bx vuông góc AB, Cy vuông góc AB. Gọi I giao điểm Bx và Cy.
a) Chứng minh tam giác IEF cân.
b) Qua E vẽ đường thẳng song song với BC cắt AC tại D. Chứng minh CD=CF
c) H giao điểm EF và BC. Chứng minh E, F đối xứng qua IH.
Cho hình chữ nhật ABCD có AB=4 cm, AD=3cm. Qua B vẽ đường thẳng vuông góc với BD cắt DC tại E.
a) Chứng minh tam giác BDC đồng dạng tam giác EDB và DB2=DC.DE
b) Tính DB, CE
c) Vẽ CF vuông góc với BE tại F. Gọi O là giao điểm của AC và BD. Nối OE cắt CF tại I và cắt BC tại K. Chứng minh I là trung điểm của CF
d) Chứng minh 3 điểm D,K,F thẳng hàng
Cho tam giác ABC, các đường trung tuyến AD, BE, CF cắt nhau tại G. Gọi H là điểm đối xứng với G qua D, I là điểm đối xứng với G qua E, K là điểm đối xứng với G qua F. Tìm các điểm đối xứng với A, với B, với C qua G.
Cho tam giác ABC vuông tại A có o C 30 , = đường cao AH. Trên đoạn HC lấy điểm D sao cho HD = HB. a) Chứng minh: = AHB AHD. b) Chứng minh ABD đều. c) Từ C kẻ CE vuông góc với đường thẳng AD (E AD). Chứng minh: DE = HB. d) Từ D kẻ DF vuông góc với AC (F AC), I là giao điểm của CE và AH. Chứng minh ba điểm I, D, F thẳng hàng.
Câu 5 (2,5 điểm). Cho tam giác nhọn ABC ( AB < AC) đường cao BE và CF cắt nhau tại H. các đường thẳng kẻ từ B song song với CF, kẻ từ C song song với BE cắt nhau tại D. Chứng minh:
a) ABE ~ACF
b) AE.BC= AB.EF
c) Gọi I là trung điểm của BC. Chứng minh I là trung điểm của DH
mọi người cíu tuiiii
Câu 5 (2,5 điểm). Cho tam giác nhọn ABC ( AB < AC) đường cao BE và CF cắt nhau tại H. các đường thẳng kẻ từ B song song với CF, kẻ từ C song song với BE cắt nhau tại D. Chứng minh:
a) ABE ~ACF
b) AE.BC= AB.EF
c) Gọi I là trung điểm của BC. Chứng minh I là trung điểm của DH cíuu
Cho tam giác abc( ab < ac ) hai đường cao BE và CF gặp nhau tại H các đường thẳng kẻ từ B//CF và từ C//BE gặp nhau tại D. CM:
a, tam giác ABE ~ACF
b, AE.AB= AB.EF
c, Gọi I là trung điểm BC. Cm H,I,D thẳng hàng