a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm AC(gt)
=> MN là đường trung bình
=> MN//BC
=> BCNM là hthang
b) Ta có: MN là đường trung bình tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}BC=\dfrac{1}{2}.12=6\left(cm\right)\)
a) Xét tam giác ABC có:
M là trung điểm AB(gt)
N là trung điểm AC(gt)
=> MN là đường trung bình
=> MN//BC
=> BCNM là hthang
b) Ta có: MN là đường trung bình tam giác ABC
\(\Rightarrow MN=\dfrac{1}{2}BC=\dfrac{1}{2}.12=6\left(cm\right)\)
1) Cho tam giác ABC cân tại A. Gọi M, N lần lượt là trung điểm cạnh AB, AC
a)Cm:Tứ giác MBNC là hình thang cân
b) biết AB= 4cm,AC=7cm,BC=8cm.Tính chu vi tứ giác BMNC
2) Cho tứ giác ABCD có AB=CD.Gọi M, N lần lượt là trung điểm cạnh AD, BC.Đường thẳng MN lần lượt cắt AB tại E và cắt CD tại F. Cm: góc AEM bằng góc CFN
Cho tam giác ABC vuông tại A có Ab = 6cm, AC=8cm. Gọi M,N,P lần lượt là trung điểm của AB,AC,BC. a) Tính BC,MN b) Chứng minh tứ giác BCNM là hình thang c) Chứng minh tứ giác BMNP là hình bình hành
cho tam giác ABC cân tại A. trên hai cạnh AB, AC lấy các điểm M, N sao cho AM=AN
a) chứng minh rằng BN=CM
b) tứ giác BCNM là hình gì? tại sao?
c) gọi I, K lần lượt là trung điểm của BN, CM. tính IK biết MN=6cm; BC=10cm
Cho tam giác ABC có cạnh BC=12cm.Gọi M và N lần lượt là trung điểm của các cạnh AB,AC.Tính MN?
cho tam giác ABC (AB<AC)có đường cao AH.Gọi M,N,K lần lượt là trung điểm của AB,AC,BC.Chứng minh rằng:
a)BCNM là hình thang
b)AMKN là hình bình hành
c)Gọi D là điểm đối xứng của H qua M.Chứng minh:tứ giác ADBH là hình bình hành
cho tam giác abc vuông tại a (ab<ac).Vẽ đường cao ah, gọi m,n lần lượt là trung điểm ah, bh.
A) chứng minh tứ giác abnm là hình thang
B) gọi d là trung diểm của cạnh bc, từ d kẻ đg thẳng song song với ac, ab và lần lượt cắt ab tại e, cắt ac tại f. Chứng minh tứ giác aedf là hình chữ nhật
Bài 4. (3,0 điểm) Cho tam giác ABC vuông tại A(AB < AC) , Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC và BC. a) Tính độ dài MN và AP. Biết BC = 10cm b) Tứ giác AMPN là hình gì? Vì sao? c) Kẻ đường cao AH của tam giác ABC và PK song song với AH (K thuộc AC). Chứng minh rằng BK vuông góc với HM.
Cho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG.
Cho tam giác ABC cân tại A. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh tứ giác BCNM là hình thang cân; b) Gọi D là điểm đối xứng với P qua N. Chứng minh: AC = PD; c) Gọi O và G lần lượt là giao điểm của BD với AP và AC. Chứng minh BD = 3DG(Chỉ cần câu c)