Cho tam giác ABC (AB = AC). Tia phân giác Ax của góc A cắt BC ở D. Từ D kẻ đường thẳng song song với AB cắt AC ở F. Từ D kẻ đường thẳng song song với AC cắt AB ở E. a) Chứng minh AE = ED = DF =
FA.
b) Từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với tia Ax cắt các đương thắng AB và AC ở P và Q. Chứng minh EF song song với PQ.
c) Chứng minh BP =CQ.
a: Sửa đề: AB<AC
Xét ΔEAD và ΔFDA có
\(\hat{EAD}=\hat{FDA}\) (hai góc so le trong, AE//DF)
AD chung
\(\hat{EDA}=\hat{FAD}\) (hai góc so le trong, AF//DE)
Do đó: ΔEAD=ΔFDA
=>EA=FD; ED=FA
Ta có: DF//AB
=>\(\hat{FDA}=\hat{DAB}\) (hai góc so le trong)
mà \(\hat{DAB}=\hat{FAD}\)(AD là phân giác của góc BAC)
nên \(\hat{FAD}=\hat{FDA}\)
=>FA=FD
mà EA=FD; ED=FA
nên EA=FD=ED=FA
b: Ta có: AE=AF
=>A nằm trên đường trung trực của EF(1)
DE=DF
=>D nằm trên đường trung trực của EF(2)
Từ (1),(2) suy ra AD là đường trung trực của EF
=>AD⊥EF
mà AD⊥PQ
nên EF//PQ
c: Qua B, kẻ BK//AC(K∈PQ)
Xét ΔMBK và ΔMCQ có
\(\hat{MBK}=\hat{MCQ}\) (hai góc so le trong, BK//CQ)
MB=MC
\(\hat{BMK}=\hat{CMQ}\) (hai góc đối đỉnh)
Do đó: ΔMBK=ΔMCQ
=>BK=CQ
Xét ΔAPQ có EF//PQ
nên \(\frac{AE}{AP}=\frac{AF}{AQ}\)
mà AE=AF
nên AP=AQ
=>ΔAPQ cân tại A
=>\(\hat{AQP}=\hat{APQ}\)
mà \(\hat{AQP}=\hat{BKP}\) (hai góc đồng vị, BK//AQ)
nên \(\hat{BKP}=\hat{BPK}\)
=>BK=BP
mà BK=CQ
nên BP=CQ