Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Anh

Cho tam giá ABC vuông tại A, đường cao AH.
a) Chứng minh hai tam giác ABC và HBA đồng dạng với nhau, từ đó suy ra AB2= BH. BC
b) Tia phân giác cắt AH tại I, Chứng minh rằng IA/IH = AC/HA
c) Tia phân giác của góc HAC cắt BC tại K. Chứng minh IK // AC.
Giúp mình với mình đang cần gấp ạ

Nguyễn Lê Phước Thịnh
17 tháng 7 2021 lúc 11:06

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔCHA\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)

Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)

c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)

nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)

Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)

hay KI//AC(Định lí Ta lét đảo)


Các câu hỏi tương tự
Đỗ Hà My
Xem chi tiết
Thanh Hồ
Xem chi tiết
phạm hiển vinh
Xem chi tiết
phạm hiển vinh
Xem chi tiết
Trần Phương Uyên
Xem chi tiết
Mèo Dương
Xem chi tiết
Trần Quang Vinh
Xem chi tiết
Giang Bảo Châu
Xem chi tiết
mthu
Xem chi tiết