\(A=\sqrt{x-1-2\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}\)
\(A=\sqrt{x-2-2\sqrt{x-2}+1}+\sqrt{x-2-6\sqrt{x-2}+9}\)
\(A=\sqrt{\left(\sqrt{x-2}-1\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}\)
\(A=\left|\sqrt{x-2}-1\right|+\left|\sqrt{x-2}-3\right|\)
\(A=\left|\sqrt{x-2}-1\right|+\left|3-\sqrt{x-2}\right|\)
\(A\ge\left|\sqrt{x-2}-1+3-\sqrt{x-2}\right|=\left|2\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\sqrt{x-2}-1\right)\left(3-\sqrt{x-2}\right)\ge0\)
TH1 : \(\hept{\begin{cases}\sqrt{x-2}-1\ge0\\3-\sqrt{x-2}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le11\end{cases}\Leftrightarrow}3\le x\le11}\)
TH2 : \(\hept{\begin{cases}\sqrt{x-2}-1\le0\\3-\sqrt{x-2}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge11\end{cases}}}\) ( loại )
Vậy GTNN của \(A\) là \(2\) khi \(3\le x\le11\)
Chúc bạn học tốt ~