cc z = x + y i x , y ∈ ℝ là số phức thỏa mãn điều kiện z ¯ - 3 - 2 i ≤ 5 và z + 4 + 3 i z - 3 + 2 i ≤ 1 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức T = x 2 + y 2 + 8 x + 4 y . Tính M + m
A. -18
B. -4
C. -20
D. -2
Cho z=x+yi với x , y ∈ ℝ là số phức thỏa mãn điều kiện z → + 2 - 3 i ≤ z + i - 2 ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 y . Tính M+m.
A. 60 + 2 10
B. 156 6 - 20 10 .
C. 60 - 2 10 .
D. 156 5 + 20 10
Cho số phức z = x + y i ( x , y ∈ R ) thỏa mãn z - 2 + i = z + 2 + 5 i và biểu thức H = x 2 + y 2 - 3 y + 1 x 2 + y 2 + 2 x - 2 y + 2 x 2 + y 2 - 2 x - 4 y + 5 đạt giá trị nhỏ nhất. Giá trị của 2x + y bằng
A. -6
B. - 6 + 5
C. - 3 - 5
D. - 6 - 5
Gọi M là điểm biểu diễn số phức z = x + yi , x , y ∈ ℝ điểm biểu diễn số phức liên hợp của z bằng cách
A. Lấy đối xứng M qua trục tọa độ
B. Lấy đối xứng M qua trục hoành
C. Lấy đối xứng M qua đường thẳng y=x
D. Lấy đối xứng M qua trục tung
Cho các số phức z, w thỏa mãn z − 5 + 3 i = 3 , i w + 4 + 2 i = 2. Tìm giá trị lớn nhất của biểu thức T = 3 i z + 2 w
A. 554 + 5
B. 578 + 13
C. 578 + 5
D. 554 + 13
Cho số phức z thỏa mãn z − 1 + i + z + 2 − 3 i = 5 và w = z − i . Gọi T là giá trị lớn nhất của w . Tìm T.
A. T = 5
B. T = 2 5
C. T = 2 2
D. T = 2 5
Cho số phức z thỏa mãn z − 1 + i + z + 2 − 3 i = 5 và w = z − i . Gọi T là giá trị lớn nhất của |w|. Tìm T.
A. T = 5
B. T = 2 5
C. T = 2 2
D. T = 2 5
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z − 4 i + z − 2 i = 5 1 + i . Tính giá trị của biểu thức T = a + b .
A. T = − 1.
B. T = 2.
C. T = 3.
D. T = 1.
Cho các số phức z 1 = − 3 i ; z 2 = 4 + i và z thỏa mãn z − i = 2. Biểu thức T = z − z 1 + 2 z − z 2 đạt giá trị nhỏ nhất khi z = a + b i a , b ∈ ℝ . Hiệu a − b bằng:
A. 3 − 6 13 17
B. 6 13 − 3 17
C. 3 + 6 13 17
D. − 3 + 6 13 17