Cho số phức z = a + a 2 i , aÎR. Khi đó điểm biểu diễn của số phức liên hợp của z trên mặt phẳng tọa độ nằm trên đồ thị hàm số
A. y = - x
B. y = - x 2
C. y = x 2
D. y = x
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
cho hàm số y = a/x ; a) xác định hệ số a biết đồ thị của nó đi qua điểm (-2;2) , b) vẽ đò thị hàm số đó và đường thẳng y = 2 trên cùng 1 hệ trục tọa độ Oxy ( đồ thị hàm số là đường cong hypebol) c) dựa vào đồ thị để tìm các giá trị của x sao cho 1/x<-2
Đường thẳng x = k cắt đồ thị hàm số y = log 5 x và đồ thị hàm số y = log 3 ( x + 4 ) . Khoảng cách giữa các giao điểm là 1/2. Biết k = a + b , trong đó a, b là các số nguyên. Khi đó tổng a + b bằng
A. 7
B. 6
C. 8
D. 5
Cho hàm số y = x + b a x - 2 a b ≠ - 2 . Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;-2) song song với đường thẳng d : 3 x + y - 4 = 0 . Khi đó giá trị của a - 3b bằng
A. -2
B. 4
C. -1
D. 5
Cho hàm số y = x + b a x - 2 a b ≠ - 2 . Biết rằng a và b là các giá trị thỏa mãn tiếp tuyến của đồ thị hàm số tại điểm A(1;-2) song song với đường thẳng d : 3 x + y - 4 = 0 . Khi đó giá trị của a - 3 b bằng
A. -2
B. 4
C. -1
D. 5
Cho (C) là đồ thị của hàm số y = x - 2 x + 1 và đường thẳng d : y = m x + 1 . Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A. m ≥ 0
B. m < 0
C. m ≤ 0
D. m > 0
Cho hàm số y=f(x) xác định, liên tục trên tập R\{1} và có bảng biến thiên
Số mệnh đề đúng trong các mệnh đề sau là?
1. Đường thẳng y=2 là đường tiệm cận ngang của đồ thị hàm số.
2. Đường thẳng x=1 là đường tiệm cận đứng của đồ thị hàm số.
3. Hàm số đồng biến trên các khoảng - ∞ ; 1 và 1 ; + ∞
A. 0.
B. 1
C. 2.
D. 3