\(A=\dfrac{cota-tana}{tana+2\cdot cota}\)
\(=\dfrac{\dfrac{cosa}{sina}-\dfrac{sina}{cosa}}{\dfrac{sina}{cosa}+2\cdot\dfrac{cosa}{sina}}\)
\(=\dfrac{cos^2a-sin^2a}{sina\cdot cosa}:\dfrac{sin^2a+2\cdot cos^2a}{sina\cdot cosa}\)
\(=\dfrac{cos^2a-sin^2a}{sin^2a+2\cdot cos^2a}\)
\(=\dfrac{1-2\cdot sin^2a}{sin^2a+2\left(1-sin^2a\right)}\)
\(=\dfrac{1-2\cdot sin^2a}{-sin^2a+2}\)
\(=\dfrac{1-2\cdot\left(\dfrac{1}{3}\right)^2}{-\left(\dfrac{1}{3}\right)^2+2}=\dfrac{1-\dfrac{2}{9}}{-\dfrac{1}{9}+2}=\dfrac{7}{9}:\dfrac{17}{9}=\dfrac{7}{17}\)