\(S=5+5^2+5^3+5^4+...+5^{2006}\)
\(5S=5^2+5^3+5^4+5^5+...+5^{2007}\)
\(5S-S=\left(5^2+5^3+5^4+5^5+...+5^{2007}\right)-\left(5+5^2+5^3+5^4+...+5^{2006}\right)\)
\(4S=5^{2017}-5\)
\(S=\frac{5^{2017}-5}{4}\)
\(S=5+5^2+5^3+5^4+....+5^{2006}\)
\(\Rightarrow5S=5\left(5+5^2+5^3+5^4+.....+5^{2006}\right)\)
\(\Rightarrow5S-S=\left(5^2+5^3+....+5^{2007}\right)-\left(5+5^2+5^3+....+5^{2006}\right)\)
\(\Rightarrow4S=5^{2007}-3\)
\(\Rightarrow S=\frac{5^{2007}-3}{4}\)