S = 30 + 32 + 34 + 36 + ... + 32002
S = 1 + 32 + 34 + 36 + ... + 32002
32S = 32 + 34 + 36 + ... + 32004
32S-S= (32 + 34 + 36 + ... + 32004)-( 1 + 32 + 34 + 36 + ... + 32002)
32S-S= 32004-1
Hay S(32-1)=32004-1
=> 8S=32004-1
=> S=(32004-1)/8
S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
a) S=3^2004-1:8
b)S chia hết cho 7
P/S : ko nói nhìu
a) S=30+32+34+36+...+32002
32S=32+34+36+38+...+32004
32S-S=(32+34+36+38+...+32004)-(30+32+34+36+...+32002)
8S=32004-1
S=(32004-1) : 8
S= 3^0 +3^2 +3^4 +....+ 3^2002
9S= 3^4 +3^6+.......+3^2004
9S-S=3^2004-1
8S=3^2004-1
S=3^2004-1/8
a) S=3+3^2+3^4+3^6+...+3^2002
3S=3^2+3^4+3^6+...+3^2002+3^2004
3S-S=3^2004-3
2S=3^2004-3
S=3^2004-3/2
b) S=7 . ( 3+3^2+3^4+3^6+...3^2002) chia hết cho 7
Vậy S chia hết cho 7.
a) \(S=3^0+3^2+3^4+...+3^{2002}+3^{2004}\)
\(9S=3^4+3^6+...3^{2004}\)
\(9S-S=3^{2004}-1\)
\(8S=3^{2004}-1\)
\(S=3^{2004}-\frac{1}{8}\)
b)\(S=\left(3^0+3^2+3^4\right)+...+\left(3^{1998}+3^{2000}+3^{2002}\right)\)
\(S=91+...+3^{1998}\left(1+3^2+3^4\right)\)
\(S=91+3^{1998}.91\)
\(S=91\left(1+3^6+...+3^{1988}\right)\)
\(S=13.7.\left(1+3^6+...+3^{1998}\right)⋮7\)
a,S=(3^2004-1):8.
b)S=3^0+3^2+3^4+......+3^2016.
=3^0+3^2+3^4+.......+3^2010.(3^0+3^2+3^4).
=1+9+81+.......+3^2010(1+9+81)
=91+.....+3^2010. 91
=91.(1+.....+3^2010)
Vì 91 chia hết cho 7 nên S chia hết cho 7.
Vậy S chia hết cho 7.
Ta có: S = 30 + 32 + 34 + 36 + … + 32002 (1)
Nhân cả hai vế của (1) cho 9, ta được:
9S = 32(30 + 32 + 34 + 36 + … + 32002)
9S = 32 + 34 + 36 + 38 + … + 32004 (2)
Lấy (2) - (1), ta được:
9S - S = (32 + 34 + 36 + 38 + … + 32004) - (30 + 32 + 34 + 36 + … + 32002)
8S = 32004 - 30
8S = 32004 - 1
Khi đó:
8S - 32004 - 1 = 32004 - 1 - 32004 - 1
8S - 32004 - 1 = -2
a, S = 3^0+3^2+3^4+3^6+...+3^2002
=>9S =3^2+3^4+3^6+3^8+...+3^2002+3^2004
=>9S - S=8S=(3^2+3^4+3^6+3^8+...+3^2002+3^2004)-(3^0+3^2+3^4+3^6+...+3^2002)
=>8S=3^2+3^4+3^6+3^8+...+3^2002+3^2004-3^0-3^2-3^4-3^6-...-3^2002
(bạn rút gọn : vd 3^2 vs -3^20
=>S=3^2004-1/8
b,S=3^0+3^2+3^4+...+3^1998+3^2000+3^2002
S=(3^0+3^2+3^4)+...+3^1998.(3^0+3^2+3^4)
S=91+...+3^1998.91
S=91.(1+...+3^1998)
S=7.13.(1+...+3^1998)
=>S chia hết cho 7(đpcm)
a, S = 3^0+3^2+3^4+...+3^2002
3^2.S = 3^2+3^4+3^6+...+3^2004
9S - S = (3^2+3^4+3^6+...+3^2004)-(3^0+3^2+3^4+...+3^2002)
8S = 3^2+3^4+3^6+...+3^2004-3^0-3^2-3^4+...+3^2002
S = 3^2004-1/8
b, S = 3^0+3^2+3^4+...+3^1998+3^2000+3^2002
S = (3^0+3^2+3^4)+...+3^1998.(3^0+3^2+3^4)
S = 91+...+3^1998.91
S = 91.(1+...+3^1998) = 7.13.(1+...+3^1998)
=>S chia hết cho 7 (đpcm)