Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lưu Ngọc Sơn Dương

Cho S= 1+5+52+53+54+...+52010

tìm các số sư khi chia S cho 2; cho 10; cho 13

Akai Haruma
29 tháng 6 lúc 22:34

Lời giải:

$S=5^0+5^1+5^2+...+5^{2010}$

Số số hạng của S: $(2010-0):1+1=2011$

Vậy S là tổng của lẻ các số lẻ nên $S$ lẻ.

$\Rightarrow S$ chia 2 dư 1.

Lại có:

$5+5^2+....+5^{2010}\vdots 5$

$\Rightarrow S=1+5+5^2+...+5^{2010}$ chia 5 dư 1.

$\Rightarrow S=5k+1$ với $k$ tự nhiên.

Mà $S$ lẻ nên $k$ chẵn. Đặt $k=2m$ với $m$ tự nhiên thì $S=5.2m+1=10m+1$

$\Rightarrow S$ chia 10 dư 1.

------------------

$S=1+5+5^2+(5^3+5^4+5^5+5^6)+(5^7+5^8+5^9+5^{10})+....+(5^{2007}+5^{2008}+5^{2009}+5^{2010})$

$=31+5^3(1+5+5^2+5^3)+5^7(1+5+5^2+5^3)+...+5^{2007}(1+5+5^2+5^3)$
$=31+(1+5+5^2+5^3)(5^3+5^7+...+5^{2007})$

$=31+156(5^3+5^7+...+5^{2007})$

$=5+26+13.12(5^3+5^7+...+5^{2007})$

$\Rightarrow S$ chia 13 dư 5.

Akai Haruma
29 tháng 6 lúc 22:35

Lời giải:

$S=5^0+5^1+5^2+...+5^{2010}$

Số số hạng của S: $(2010-0):1+1=2011$

Vậy S là tổng của lẻ các số lẻ nên $S$ lẻ.

$\Rightarrow S$ chia 2 dư 1.

Lại có:

$5+5^2+....+5^{2010}\vdots 5$

$\Rightarrow S=1+5+5^2+...+5^{2010}$ chia 5 dư 1.

$\Rightarrow S=5k+1$ với $k$ tự nhiên.

Mà $S$ lẻ nên $k$ chẵn. Đặt $k=2m$ với $m$ tự nhiên thì $S=5.2m+1=10m+1$

$\Rightarrow S$ chia 10 dư 1.

------------------

$S=1+5+5^2+(5^3+5^4+5^5+5^6)+(5^7+5^8+5^9+5^{10})+....+(5^{2007}+5^{2008}+5^{2009}+5^{2010})$

$=31+5^3(1+5+5^2+5^3)+5^7(1+5+5^2+5^3)+...+5^{2007}(1+5+5^2+5^3)$
$=31+(1+5+5^2+5^3)(5^3+5^7+...+5^{2007})$

$=31+156(5^3+5^7+...+5^{2007})$

$=5+26+13.12(5^3+5^7+...+5^{2007})$

$\Rightarrow S$ chia 13 dư 5.


Các câu hỏi tương tự
Thư Đỗ Ngọc Anh
Xem chi tiết
Trần Thùy Dương
Xem chi tiết
dâu cute
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Ngô Thọ Thắng
Xem chi tiết
Phạm Bảo Ngọc
Xem chi tiết