\(S=1+4+4^2+...+4^{99}\\ 4S=4\left(1+4+4^2+...+4^{99}\right)\\ 4S=4+4^2+4^3+...+4^{100}\\ 4S-S=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ 3S=4^{100}-1\\ 3S+1=4^{100}-1+1\\ 3S+1=4^{100}=\left(2^2\right)^{100}=2^{200}=\left(2^5\right)^{40}=32^{40}>32^{20}\)