a, cho pt : \(2x^2+\left(2m-1\right)x+m-1=0\)
TÌm hệ thức giữa 2 nghiệm x1; x2 ko phụ thuộc vào tham số m
b, cho pt: \(\left(m+2\right)x^2-2\left(m+1\right)x+m-4=0\) \(\left(m\ne-2\right)\)
tìm m để pt có 2 nghiệm trái dấu trong đó nghiệm dương có giá trị tuyệt đối lớn hơn.
Cho pt: \(x^3+\left(m+1\right)x^2+2\left(m-2\right)x-3m+2=0\)
a) Tìm m để pt có 3 nghiệm phân biệt
b) Tìm m để pt có 3 nghiệm phân biệt <2
Cho\(\left(m-2\right)x^2-2\left(m-2\right)x+3=0\)
a)tìm m để pt có nghiệm kép
b)tìm m để pt co 2 nghiệm phân biệt
c)tìm m để pt có nghiệm
d)tìm m để pt vô nghiệm
Cho pt bậc hai: \(2x^2-\left(m+1\right)x+m+1=0\) (1)
a, giải pt (1) khi m=-3
b, Tìm m để pt (1) có nghiệm.
giải chi tiết với ak
cho pt ẩn x: \(x^2-2\left(m-3\right)x+m^2+3=0\) với m là tham số
a) tìm giá trị của m để pt có 2 nghiệm
b) gọi \(x_1,x_2\) là 2 nghiệm của pt. tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(\left(x_1-x_2\right)^2-5x_1x_2=4\)
B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)
a. Tìm m để (1) có 2 nghiệm dương
b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên
B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)
a. Tìm m để (1) có 2 nghiệm trái dấu
b. Tìm m để nghiệm này bằng bình phương nghiệm kia
B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN
B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)
B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)
a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)
b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi
B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)
a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)
b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)
B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)
a. tìm m để (1) có nghiệm
b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)
cho PT
a) \(x^2-\left(m+4\right)x+3m+3=0.\)xác định m để PT có 1 nghiệm = 2. TÌm nghiệm còn lại
cho pt: \(x^2-2\left(m+1\right)x+m-4=0\)
a) Tìm m để pt có 2 nghiệm đối nhau
b) CMR: Pt luôn có 2 nghiệm phân biệt với mọi m
c) CMR biểu thức: \(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)Không phụ thuộc vào m
e) xác định m để pt có 2 nghiệm phân biệt dương ?
Cho PT: \(x^2-x-3m-2\)
a) Tìm m PT có nghiệm kép. Tìm nghiệm kép khi đó.
b) Tính \(\left(x_1+x_2\right)^2-3x_1x_2.\)
c) Tính \(\left(x_1+x_2\right)^2.\)
d) Tính \(\left(x_1\right)^2\left(x_2\right)^2.\)
e) Tính \(\left(x_1\right)^3+\left(x_2\right)^3.\)