Chứng minh rằng phương trình x2 + x - 1 = 0 có hai nghiệm trái dấu. Gọi x1 là nghiệm âm của phương trình. Tính giá trị biểu thức \(D=\sqrt{x_1^8+10x_1+13}+x_1\)
Cho phương trình \(x^2+x-1=0\)
Gọi \(x_1\)là nghiệm âm của phương trình. Tính giá trị của biếu thức \(P=\sqrt{x_1^8+10x_1+13}+x_1\)
giúp với ạ. mình đang cần gấp ạ
Gọi x1 là nghiệm âm của phương trình \(x^2+x-1=0\), Không giải phương trình, tính
\(D=\sqrt{x_1^8+10x_1+13}+x_1\)
Cho phương trình `x^2- 4x + 3 = 0 ` có hai nghiệm phân biệt `x_1,x_2 `. Không giải phương trình, hãy tính giá trị của biểu thức : `\sqrt{x_1}+``\sqrt{x_2}`
cho phương trình : \(x^2-x-1=0\) có hai nghiệm phân biệt \(x_1,x_2\) không giải phương trình hãy tính giá trị của biểu thức T = \(x_1^4-x_1^2+x_2^2-x_1\)
cho phương trình : \(2x^2-\left(m+3\right)x+m=0\) (1)
a, chứng tỏ phương trình (1) có nghiệm với mọi giá trị của m
b, gọi \(x_1,x_2\) là các nghiệm của phương trình (1).Tìm giá trị nhỏ nhất của biểu thức sau A= trị tuyệt đối của \(x_1-x_2\)
Đơn giản biểu thức bằng vận dụng tính chất nghiệm đa thức:
N = \(\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}+\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Gọi x1 là nghiệm âm của phương trình: x2 + x -1 =0.
Không giải phương trình tính giá trị của:
\(D=\sqrt{x_1^8+10x_1+13}+x_1\)
Cho phương trình: \(x^2\) + (m-1)x - m2 - 2 = 0 ( x là ẩn, m là tham số). Tìm giá trị của m để phương trình có hai nghiệm trái dấu thỏa mãn 2/\(x_1\)/ - /\(x_2\)/ = 4 ( biết \(x_1\) < \(x_2\))
Cho phương trình \(x^2-ax+a-1=0\) có hai nghiệm \(x_1,x_2\)
\(a\)) Không giải phương trình, hãy tính giá trị của biểu thức: \(M=\dfrac{3x_1^2+3x_2^2-3}{x_1^2x_2+x_1x_2^2}\)
\(b\)) Tìm giá trị của \(a\) để: \(P=x_1^2+x_2^2\) đạt giá trị nhỏ nhất.