Bài 3 (2,5 điểm)
Cho phương trình -x+(2m - 1)x + m – m^2 =0 (1) (với m là tham số).
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt. Tìm hai nghiệm đó khi m = 2.
b) Tìm tất cả các giá trị của m sao cho x1 (1-2x2)+x2(1-2x1)= mo, với x1 và x2, là hai nghiệm của phương trình (1).
c) Với X1 và X2 là hai nghiệm của phương trình (1), chứng minh rằng với mọi giá trị của m ta luôn có x1 - 2x1x2 + x2 < hoặc =1
Mong các bạn giúp mik!
Cho phương trình x2 – 2(m – 1)x + 2m – 5 = 0 (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
cho phương trình \(x^2-2x+m-1=0\), với m là tham số. Tìm các giá trị của m để phương trinh trên có hai nghiệm phân biệt x1, x2 thỏa mãn \(x_1^2+x_2^2-3x_1x_2=2m^2+\left|m-3\right|\)
Cho phương trình \(x^2-\left(2m-1\right)x+2m-2=0\) (với x là ẩn, m là tham số)
Tìm tất cả các giá trị tham số m để phương trình đã cho có 2 nghiệm phân biệt thỏa \(x_1^4+x_2^4=17\)
Cho phương trình x2+(2m-1)x-m=0 (1)
a)Chứng minh phương trình (1) luôn có nghiệm với mọi m
b)Gọi x1;x2 là hai nghiệm của phương trình (1).Tìm giá trị của m để biểu thức
A=x12+x22-x1x2 có giá trị nhỏ nhất
Cho phương trình \(x^2-\left(2m+3\right)x+m=0\)
a) Chứng minh rằng phương trình đã cho có nghiệm với mọi m.
b) goi x1,x2
là các nghiệm của phương trình. tìm m để T=\(x_1^2+x_2^2\) đạt giá trị nhỏ nhất.
cho phương trình x^2-2(m+1)x+2m=0 (m là tham số)
1) chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2) tìm các giá trị của m để phương trình có hai nghiệm cùng dương
3) tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m
Cho phương trình x 2 + 2 m − 1 x + 1 − 2 m = 0 (với m là tham số).
a) Giải phương trình với m= 2.
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
c) Tìm các giá trị của m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 .
2. Cho phương trình x^2 + mx + m - 1 (m là tham số). (1)
a) Giải phương trình khi m = 5
b) Chứng minh phương trình (1) luôn có nghiệm với mọi giá trị của m. Giả sử x1,x2 là hai nghiệm của phương trình (1), tìm giá trị nhỏ nhất của biểu thức: Q = x1^2 + x2^2 = 4x1 - 4x2.
Cho phương trình : x² - 2( m-1)x - 2m=0(I) a. Chứng tỏ rằng phương trình (I) luôn có hai nghiệm phân biệt với mọi giá trị m b. Tính X1 + X2 ; X1.X, theo m c. Tìm m để x1² + x2² = 4