cho phương trình \(ax^2+bx+c=0\left(a\ne0\right)\)) có 2 nghiệm \(x_1;x_2\)thỏa mãn điều kiện \(0\le x_1\le x_2\le2\). Tìm GTLN của biểu thức
\(Q=\frac{2a^2-3ab+b^2}{2a^2-ab+ac}\)
Cho phương trình:
x2 + ax + b + 2 = 0 (a, b là tham số)
Tìm tất cả giá trị của tham số a, b để phương trình trên có 2 nghiệm phân biệt x1, x2 thoả mãn điều kiện:
\(\left\{{}\begin{matrix}x_1-x_2=4\\x_1^3-x_2^3=28\end{matrix}\right.\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
Cho phương trình : \(x^2-mx-4=0\)
Gọi x1,x2 là hai nghiệm phân biệt của phương trình. Tìm giá trị nhỏ nhất của biểu thức A= \(\frac{2\left(x_1+x_2\right)+7}{x_1^2+x_2^2}\)
Đối với phương trình `ax^2 +bx +c=0` \(\left(a\ne0\right)\) và biệt thức \(\Delta=b^2-4ac\)
`-` Nếu \(\Delta>0\) thì phương trình có hai nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a};x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
`-` Nếu \(\Delta=0\) thì phương trình có nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)
`-` Nếu \(\Delta< 0\) thì phương trình vô nghiệm
Theo kết luận trên áp dụng với bài sau đây :
`a, 7x^2 -2x+3=0`
`b,6x^2 +x+5=0`
`c, 6x^2 +x-5=0`
Cho phương trình \(x^2-2\left(m+1\right)x+2m-3=0\) . Tìm các giá trị của m để phương trình có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn biểu thức \(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|\)đạt giá trị nhỏ nhất
Cho phương trình \(x^{^2}-2\left(m+1\right)x+3m=0\) m là tham số
a) Chứng tỏ phương trình có hai nghiệm thỏa\(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\)
b) Gọi \(x_1,x_2\) là hai nghiệm của phương trình. Tìm giá trị của m để biểu thức :
\(A=x_1^2+x_2^2-6x_1x_2\) đạt gia trị nhỏ nhất
Bài 1: Cho phương trình \(^{x^2-2\left(k-1\right)x+2k-5=0}\)
a) Giải phương trình với k = 1
b) Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn hệ thức \(\left|x_1\right|-\left|x_2\right|=\sqrt{14}\)
Bài 2: Cho phương trình \(x^2-5x+m=0\)(m là tham số)
a) Giải phương trình với m = 4
b) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\left|x_1-x_2\right|=3\)
Cho phương trình \(\left(m-1\right)x^2-2mx+m+1=0\)0 với m là tham số
a) CMR: phương trình có 2 nghiệm phân biệt với m #1
b) Xác định giá trị của m để phương trình có tích hai nghiệm bằng 5. Từ đó hãy tính tổng tích của hai nghiệm phương trình đó
c) Tìm một hệ thức giữa hai nghiệm không phụ thuộc vào m
c)Tìm m để phương trình có hai nghiệm \(x_1;x_2\)thỏa mãn hệ thức
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\)