Cho phần vật thể (T) giới hạn bởi hai mặt phẳng có phương trình x = 0 và x = 2 Cắt phần vật thể (T) bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ 0 ≤ x ≤ 2 , ta được thiết diện là một tam giác đều có độ dài cạnh bằng x 2 - x . Tính thể tích V của phần vật thể (T).
A. V = 4 3 .
B. V = 3 3 .
C. V = 4 3 .
D. V = 3 .
Cho phần vật thể (T) giới hạn bởi hai mặt phẳng có phương trình x = 0 và x = 2. Cắt phần vật thể (T) bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ 2 , , ta được thiết diện là một tam giác đều có độ dài cạnh bằng x 2 − x . Tính thể tích V của phần vật thể (T).
A. V = 4 3 .
B. V = 3 3 .
C. V = 4 3 .
D. V = 3 .
Cho phần vật thể ξ giới hạn bởi hai mặt phẳng có phương trình x = 0 và x = 2. Cắt phần vật thể ξ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ 2 , ta được thiết diện là một tam giác đều có độ dài cạnh x 2 − x . Tính thể tích V của phần vật thể ξ
A. V = 4 3
B. V = 3 3
C. V = 4 3
D. V = 3
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=1 và x=4, biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 4) thì được thiết diện là một hình lục giác đều có độ dài cạnh là 2x
A. 126 3 π
B. 126 3
C. 63 3 π
D. 63 3
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x 1 ≤ x ≤ 3 thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và 3 x 2 − 2
A. V = 32 + 2 15
B. V = 124 π 3
C. V = 124 3
D. V = ( 32 + 2 15 ) π
Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng x=0 và x=3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x 0 ≤ x ≤ 3 là một hình chữ nhật có hai kích thước là x và 2 9 - x 2
A. 16
B. 17
C. 19
D. 18
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=0 và x=3, biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 3 ) là một hình chữ nhật có hai kích thước là x và 2 9 − x 2 .
A. V = 4 π ∫ 0 3 9 − x 2 d x
B. V = ∫ 0 3 2 x 9 − x 2 d x
C. V = 2 ∫ 0 3 x + 2 9 − x 2 d x
D. V = ∫ 0 3 x + 2 9 − x 2 d x
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x=0 và x=3, biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x ( 0 ≤ x ≤ 3 ) là một hình chữ nhật có hai kích thước là x và 2 9 − x 2 .
A. V = 4 π ∫ 0 3 9 − x 2 d x
B. V = ∫ 0 3 2 x 9 − x 2 d x
C. V = 2 ∫ 0 3 x + 2 9 − x 2 d x
D. V = ∫ 0 3 x + 2 9 − x 2 d x
Viết công thức tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng vuông góc với Ox tại các điểm x = a, x = b (a<b) có diện tích thiết diện bị cắt bởi hai mặt phẳng vuông với trục Ox tại điểm có hoành độ x (a ≤ x ≤ b) là S(x)
A. V = ∫ a b S ( x ) d x
B. V = π ∫ a b S ( x ) d x
C. V = π ∫ a b S 2 ( x ) d x
D. V = ∫ b a S ( x ) d x