Parabol (P) có đỉnh O nên có dạng y = a x 2 ( a ≠ 0 )
Mà (P) đi qua điểm A (2; 4) nên tọa độ A thỏa mãn phương trình parabol (P) suy ra: 4 = a. 2 2 = 4a ↔ a = 1 (thỏa mãn a ≠ 0)
Phương trình parabol (P) là y = x 2 . (d) cắt (P) tại hai điểm phân biệt thì phương trình hoành độ giao điểm phải có hai nghiệm phân biệt.
Suy ra phương trình x 2 − 2(m – 1)x + 2m + 2 = 0 có hai nghiệm phân biệt
↔ ∆ ’ = [ − ( m – 1 ) ] 2 + 2 m + 2 > 0
↔ m 2 – 2m + 1 + 2m + 2 > 0 ↔ m 2 + 3 > 0 (luôn đúng)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt
Đáp án: D