Vì P(x) chia cho đa thức bậc 2 nên dư là đa thức bậc 1
Gọi đa thức ấy là \(ax+b\)
\(\Leftrightarrow P\left(x\right)=\left(x^2-4x+3\right)\cdot a\left(x\right)+ax+b\\ \Leftrightarrow P\left(x\right)=\left(x-1\right)\left(x-3\right)\cdot a\left(x\right)+ax+b\)
\(P\left(1\right)=3\Leftrightarrow a+b=3\\ P\left(3\right)=7\Leftrightarrow3a+b=7\)
Từ đó ta có hệ \(\left\{{}\begin{matrix}a+b=3\\3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy đa thức dư là \(2x+1\)