Lời giải:
ĐK: $x\geq 0$
Để $|P|>P$ thì $P<0$
$\Leftrightarrow \frac{\sqrt{x}-1}{\sqrt{x}+2}<0$
$\Leftrightarrow \sqrt{x}-1<0$
$\Leftrightarrow 0\leq x< 1$
Lời giải:
ĐK: $x\geq 0$
Để $|P|>P$ thì $P<0$
$\Leftrightarrow \frac{\sqrt{x}-1}{\sqrt{x}+2}<0$
$\Leftrightarrow \sqrt{x}-1<0$
$\Leftrightarrow 0\leq x< 1$
Cho biểu thức : \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\left(x\ne+-3\right)\)
a/ Rút gọn biểu thức A.
b/ Tìm x để A < 2.
c/ Tìm x nguyên để A nguyên
1, Cho bt \(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)
a,rút gọn M
b,tìm x để\(M=\sqrt{x}\)
c, tìm các số tự nhiên x để gtri của M là số tự nhiên
2,Cho hpt : \(\hept{\begin{cases}mx+2my=m+1\\x+\left(m+1\right)y=2\end{cases}}\)
a,Giải hệ khi M=2
b,tìm m để pt có nghiệm\(\left(x,y\right)=\left(2,-1\right)\)
Giúp mình nhanh nhé
\(D=\frac{15\sqrt{x}-3}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a, rút gọn
b, tìm x để B < -4
c, tìm x \(\in\)Z để D \(\in\)Z
d, tìm GTLN của D
\(Q=\left(\frac{\sqrt{x}}{2+\sqrt{x}}+\frac{x+9}{9-x}\right):\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)
a, rút gọn
b, tìm Q < -1
c, tìm x để Q = \(\frac{-3}{4}\)
d, tìm x \(\in\)Z để Q \(\in\)Z
Cho biểu thức : A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, Rút gọn A
b,Tìm các giá trị của x để A <1
c,Tìm các giá trị nguyên của x sao cho A nguyên
Cho biểu thức: \(P=\left(\sqrt{x}-\frac{x+2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
a. Rút gọn P (Kết quả thôi)
b. Tìm x để P<1 (Kết quả)
c.Tìm x nguyên để P nguyên (kết quả)
d.Tìm x để P đạt giá trị nhỏ nhất
Cho biểu thức:
A=(\(\frac{1}{\sqrt{x-1}}+\frac{1}{\sqrt{x+1}}\)) . \(\frac{^{x^2-1}}{2}-\sqrt{x^2-1}\)
a) Tìm x để A xác định. Rút gọn A
b)Tìm x khi \(A=2\sqrt{x}\)
Cho biểu thức \(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\) .
a ) Rút gọn P
b ) Tìm giá trị lớn nhất của P
c ) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\) nhận giá trị là số nguyên .
\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{Y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3+y}+\sqrt{xy^3}}\)
tìm điều kiện để bthuc xác định
rút gọn biểu thức
cho xy=6 xác định x,y để bthuc có GTNN