Cho đtr (o,r ). Qua điểm K nằm ngoài đường tròn vẽ 2 tiếp tuyến KA, KB và cát tuyến KCD (A, B là tiếp điểm ) , C nằm giữa K và D. H là trung điểm CD
1) c/m tứ giác KAOB nội tiếp
2 ) tứ giác KAOH nội tiếp
3) tứ giác KAHO nội tiếp
4) góc AHK= góc KOB
Gọi M là giao điểm AB và OK. c/m
5) KA . KA = KC . KD
6 ) KC . KD = KO. KM
7) MK . MO= AM . AM
8) OM . OK + KC . KD = KO. KO
9) AC . KA = AD . KC
10) góc ADB = GÓc AHK
11) gọi I là giao điểm của đtr ( o,r ) và đoạn thẳng OK. c/m I là tâm đtr nội tiếp tam giác KAB
12) c/m AC.KA = AD . BC
13) tứ giác CMOD nội tiếp
14) đường thẳng AB chứa phân giác góc CMD
15 ) kẻ đường kính AN của đtr (o,r ) gọi G là giao điểm Cn và KO . c/m tứ giác KCGB nội tiếp
16) gọi S là giao điểm KO, BN . c/m tứ giác AMSD nội tiếp
17) góc ADC = góc MDC
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
Từ điểm K ở ngoài đường tròn (O), vẽ các tiếp tuyến KA và KB đến (O) với A và B là các tiếp điểm và cát tuyến KCD không đi qua tâm (C nằm giữa K và D). Vẽ OM L CD (M thuộc CD)
a) Chứng minh tứ giác KAOB nội tiếp và 5 điểm K, A, O, M, B cùng thuộc một đường tròn.
b) Chứng minh KA=KC.KD.
c) Đường thẳng qua C vuông góc với OB cắt AB tại E. Gọi G là giao điểm của DE và KB. Chứng minh tứ giác ACEM nội tiếp và G là trung điểm của KB.
Từ điểm K nằm bên ngoài đường tròn (O) vẽ hai tiếp tuyến KA và KC, vẽ cát tuyến KBD(B nằm giữa K và D),KO cắt AC ở M và KB cắt AC ở I. H là trung điểm của BD. c/m
a) KA^2 =KC^2=KB. KD
b) AB. CD=AD. BC=1/2 AC. BD
Cần câu b
Từ điểm K nằm bên ngoài đường tròn (O) vẽ hai tiếp tuyến KA và KC, vẽ cát tuyến KBD(B nằm giữa K và D),KO cắt AC ở M và KB cắt AC ở I. H là trung điểm của BD. c/m
a) KA^2 =KC^2=KB. KD
b) AB. CD=AD. BC=1/2 AC. BD
Cho đường tròn (O), điểm K nằm ngoài đường tròn. Kẻ các tiếp tuyến KA,KB và cát tuyến KCD với đường tròn. M là giao điểm của OK và AB.Kẻ OH vuông góc CD cắt AB ở E.CMR:
a)CMOE là tứ giác nội tiếp
b)CE,DE là tiếp tuyến của đường tròn (O).
Cho đường tròn (O; R), qua điểm K ở bên ngoài đường tròn, kẻ các tiếp tuyến KB, KD ( B, D là các tiếp điểm), kẻ cát tuyến KAC (A nằm giữa K và C).
a) Chứng minh rằng hai tam giác KDA và KCD đồng dạng.
b) Chứng minh AB. CD = AD. BC
c) Kẻ dây CN song song với BD. Chứng minh AN đi qua trung điểm BD.
Cho K là điểm nằm ngoài đường tròn (O) .Từ K kẻ các tiếp tuyến KA, KB tới đường tròn (O) (A,B là hai tiếp điểm) và cát tuyến KCD sao cho BD là đường kính của đường tròn (O)
a) CMR: tứ giác KAOB nội tiếp đường tròn
b) CM: \(KA^2=KC.KD\)
c) Gọi M là giao điểm của AC và KO và H giao điểm của OK và AB. CMR: MH=MK