1. Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ đường thẳng d ắt (O) tại H,K (AH,AK). Gọi T là trung điểm HK. Kẻ tiếp tuyến AB, AC (B, C là tiếp điểm, B thuộc cung lớn HK).
2. Cho tam giác ABC đều, AD là đường cao. Gọi E là 1 điểm thuộc BD. H là trung điểm AE. Vẽ EF vuông góc với AB tại F, EG vuông góc voies AC tại G.
a) CM: ADEF nội tiếp.
b) Tính góc DHF.
c) Gọi I là giao điểm AE và FG. CM: IA.IE = IF.IG
3. Cho tam giác ABC nhọn (AB<AC, AB<BC) có 2 đường cao AH, BK cắt nhau tại O
a) CM: Tứ giác ABHK nội tiếp.
b) Lấy điểm E đối xứng với A qua K. CMR góc BKH = DEB
c) Vẽ F sao cho tứ giác ABFD là hình bình hành. CMR: BDEC nội tiếp và FE // BD
Cho đường tròn ( O; R ) và điểm A cố định ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AM, AN với đường tròn (M và N là các tiếp điểm). Một đường thẳng d đi qua A cắt (O;R) tại B và C (AB<AC). Gọi I là trung điểm BC
a, Chứng minh A, M, N, O, I cùng thuộc 1 đường tròn
b, Chứng minh AK.AI = AB.AC
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
Cho đường tròn (O;R), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn ( B, C là các tiếp điểm), gọi E là trung điểm của BC.
1. Cm A, E, O thẳng hàng và OE=R2
2. Qua điểm M thuộc cung nhỏ BC kẻ tiếp tuyến với đường tròn (O) , nó cắt các tiếp tuyến AB, AC thứ tự tại D và K. Cm chu vi tam giác ADK bằng 2AB.
3. Đường thẳng đi qua O song song BC cắt các đường thẳng AB , AC thứ tự P,Q. Cm DP + KQ >= PQ
Từ điểm M nằm ngoài đường tròn (O;R) kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC ko đi qua tâm O (điểm B nằm giữa 2 điểm M và C) gọi H là trung điểm của BC đường thẳng OH cắt (O;R) tại hai điểm N,K ( trong đó điểm K thuộc cung BAC. Gọi D là giao điểm của AN và BC).CM a) tứ giác AKHD là tứ giác nội tiếp b) góc NAB =góc NBD và NB^2 = NA ND
Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
cho điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (o) (B,C là các tiếp điểm) gọi H là giao điểm của OA và BC, điểm M thuộc cung BC, đường thẳng AM cắt đường tròn (O) tại D và E (D nằm giũa A và M), điểm N là trung điểm của dây cung DE
1) chứng minh 5 điểm A,B,C,O và N cùng thuộc 1 đường tròn
2) chứng minh góc BOC=2.ANC và tam giác AMH đồng dạng với tam guacs AON
3) chứng minh AB2= AD.AE và tứ giác DHOE là tứ giác nội tiếp
Cho đường tròn (O; R) và điểm S cố định nằm ngoài đường tròn (O). Kẻ hai tiếp tuyến SA và SB của đường tròn (O; R)(A, B là tiếp điểm). Đường thẳng bất kỳ qua S cắt đường tròn (O) tại C và D(SC < SD và C, O, D không thẳng hàng). Gọi E là trung điểm của đoạn thẳng CD. 1 Chứng minh bốn điểm S, A, 0, B cùng thuộc một đường tròn.
Mik cần hình và phần giải câu a
Câu 4: (3,0 điểm). Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H. a/ Tính OH. OM theo R. b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn. c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R)
Cho đường tròn tâm (O) cố định . Từ một điểm A cố định ở bên ngoài đường tròn (O) kẻ các tiếp tuyến AM và An với đường tròn ( M và N là các tiếp điểm ) đường thẳng qua A cắt đường tròn tâm (O) tại hai điểm B và C ( B nằm giữa A và C ) gọi I là trung điểm BC . a, chứng minh tứ giác amon nội tiếp.
b, gọi k là giao điểm của MN và BC . chứng minh tam giác AKM đồng dạng tam giác AMI và AK.AI=AB.AC