a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của góc MOA
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
CD=CM+MD
mà CM=CA và DB=DM
nên CD=CA+DB
b:
OC là phân giác của góc MOA
=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)
OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)
=>\(2\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
=>ΔCOD vuông tại O
Xét ΔOCD vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
=>\(AC\cdot BD=R^2\)
c: Gọi H là giao điểm của DO và MB
Ta có: DM=DB
=>D nằm trên đường trung trực của MB(1)
Ta có: OM=OB
=>O nằm trên đường trung trực của MB(2)
Từ (1) và (2) suy ra OD là trung trực của MB
=>OD\(\perp\)MB tại H
Ta có: \(\widehat{GMH}+\widehat{OGM}=90^0\)(ΔGHM vuông tại H)
\(\widehat{DMG}+\widehat{OMG}=\widehat{DMO}=90^0\)
mà \(\widehat{OGM}=\widehat{OMG}\)
nên \(\widehat{GMH}=\widehat{DMG}\)
=>MG là phân giác của góc DMB
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DO là phân giác của góc MDB
Xét ΔMDB có
DH,MG là các đường phân giác
DH cắt MG tại G
Do đó: G là tâm đường tròn nội tiếp ΔMDB