a) XétODE, có: \(\widehat{DOE}\)=90*:
OD=OE=R
=> DOE vuông cân tại O
và DE2=OD2+OE2 (Định lý Py-ta-go trong tam giác DOE vuông )
<=> DE2=2R2
<=> DE=\(\sqrt{2}R\)
và có DE.OH=OD.OE ( Hệ thức lượng trong DOE vuông)
<=> \(\sqrt{2}R\).OH= R2
<=> OH=\(\frac{R^2}{\sqrt{2}R}\)=\(\frac{R}{\sqrt{2}}\)
Xét OHC, có: \(\widehat{DHC}\)=90*:
HC2= DC2 - OH2
<=> HC2= 9R2- \(\frac{R^2}{2}\)
<=> HC2= \(\frac{17R^2}{2}\)
=>HC=\(\frac{R\sqrt{34}}{2}\)(cm) (1)
mà DH=HE=\(\frac{DE}{2}\)= \(\frac{\sqrt{2}R}{2}\)(2)
Từ (1) và (2)=> DC=HC+DH
= \(\frac{\sqrt{34}R}{2}+\frac{\sqrt{2}R}{2}\)
= \(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)(cm)
Ta có: CE= HC+HE
= \(\frac{\sqrt{34}R}{2}-\frac{\sqrt{2}R}{2}\)
= \(\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)(cm )
Vậy DC=\(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)(cm)
EC=\(\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)(cm)
b) Ta có: DC.CE=AB.BC
<=> \(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}.\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}=4R.2R\)
<=> 8R2=8R2
Vậy CD.CE=AB.BC
thì OB=R rồi thì t kéo dài OB ra bằng 2R nữa thì đc OC=3R