AC=AD
OC=OD
=>OA là trung trực của CD
=>OA vuông góc CD tại H
góc AMB=1/2*180=90 độ
góc IHB+góc IMB=180 độ
=>IHBM nội tiếp
AC=AD
OC=OD
=>OA là trung trực của CD
=>OA vuông góc CD tại H
góc AMB=1/2*180=90 độ
góc IHB+góc IMB=180 độ
=>IHBM nội tiếp
Trên nửa đường tròn tâm O đường kính AD lấy điểm C và B sao cho \(\stackrel\frown{AC}>\stackrel\frown{CD}\) \(\stackrel\frown{AB}=\stackrel\frown{BC}\) Gọi E là giao điểm của AB và DC,H là giao điểm của AC và BD, K là giao điểm của EH và AD( Đã có tam giác ADE cân tại D, KHCD là tứ giác nội tiếp)
1)KC//AE
2)Tia HC cắt (D;DE) tại F,KC cắt EF tại M.CM: MB là tiếp tuyến của đường tròn đường kính AD
Trên nửa đường tròn tâm O đường kính AD lấy điểm C và B sao cho \(\stackrel\frown{AC}>\stackrel\frown{CD}\),\(\stackrel\frown{AB}=\stackrel\frown{BC}\) Gọi E là giao điểm của AB và DC,H là giao điểm của AC và BD, K là giao điểm của EH và AD,Tia HC cắt (D;DE) tại F,KC cắt EF tại M( Đã có tam giác ADE cân tại D, KHCD là tứ giác nội tiếp,KC//AE).CM: MB là tiếp tuyến của đường tròn đường kính AD
Cần gấp !!!!!!
Cần gấp !!!
Trên nửa đường tròn tâm O đường kính AD lấy điểm C và B sao cho \(\stackrel\frown{AC}>\stackrel\frown{CD}\),\(\stackrel\frown{AB}=\stackrel\frown{BC}\) Gọi E là giao điểm của AB và DC,H là giao điểm của AC và BD, K là giao điểm của EH và AD,Tia HC cắt (D;DE) tại F,KC cắt EF tại M( Đã có tam giác ADE cân tại D, KHCD là tứ giác nội tiếp,KC//AE).CM: MB là tiếp tuyến của đường tròn đường kính AD
Cần gấp !!!!!!
Cho đường tròn (O;R) đường kính AB. Kẻ đường kính CD vuông góc với AB. Lấy điểm M thuộc cung nhỏ BC,AM cắt CD tại E. Qua kẻ tiếp tuyến với đường tròn (O) cắt đường thẳng BM tại N . Chứng minh bốn điểm M,N,D,E cùng nằm trên một đường tròn
Cho đường tròn (O) đường kính AB, dây CD vuông góc với AB tại E (E nằm giữa A và O,E khác A và O). Lấy điểm M thuộc cung nhỏ BC sao cho cun MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K.
a, Chứng minh tứ giác BMFE nội tiếp
b, Chứng minh BF vuông góc với AK và EK.EF=EA.EB
c, Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK=IF
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.
Cho đường tròn (O; R), đường kính AB vuông góc với dây cung CD tại H (HB < R). Gọi M là điểm bất kì trên cung nhỏ AC, toa AM cắt đường thăng CD tại N; MB cắt CD tại E
a, Chứng minh các tứ giác AMEH và MNBH nội tiếp
b, Chứng minh NM.NA = NC.ND = NE.NH
c, Nối BN cắt (O) tại K (K ≠ B). Đường thẳng KH cắt (O) tại điểm thứ hai là F. Chứng minh ba điểm A, E, K thẳng hàng và ∆AMF cân.
d, Chứng minh rằng khi M di dộng trên cung nhỏ AC thì I luôn thuộc một đường tròn cố định
cho (o) đường kính AB vẽ dây cung CD vuông góc với AB tại I(I giữa A và O) lấy M trên cung nhỏ BC Am cắt CD tại N chứng minh tân đường tròn ngoại tiếp tam giác CMN thuộc đường thẳn BC
Cho đường tròn tâm O, đường kính AB. Ke dây cung CD (C thuộc cung AD). AC cắt BD tại M , AD cắt BC tại H.
a, Chứng minh : H là trực tâm của tam giác MAB.
MH cắt AB tại K.Chứng minh 4 điểm K, H, D, B thuộc một đường tròn.
1.
Cho đường tròn tâm O đường kính AB. Dây CD cắt đường kính AB tại I. Gọi H,K là chân các đường vuông góc kẻ từ A,B đến CD. Chứng minh rằng CH=DK
2.
Cho tam giác ABC nhọn nội tiếp đường tròn (O) các đường cao AD, BE, CF cắt nhau tại H đường thẳng EF cắt (O) tại M,N ( F nằm giữa M và E ) . Chứng minh rằng AM = AN
3.
Cho (O) và dây AB , gọi E,F là hai điểm phân biệt bất kỳ trên dây cung AB . Gọi M là điểm chính giữa cung AB. Các tia ME, MF cắt (O) tại P,Q. Chứng minh rằng : 4 điểm E,F,Q,P cùng thuộc một đường tròn.
CÁC BẠN LÀM ƠN GIÚP MÌNH VỚI! THỰC SỰ MÌNH RẤT CẦN GẤP... CẢM ƠN CÁC BẠN RẤT NHIỀU ><