1) CMR: Trong tam giác vuông đường kính đường tròn nội tiếp bằng tổng 2 cạnh góc vuông trừ cạnh huyền
2) Cho tam giác ABC vuông A đường cao AH. Gọi (O;R) bán kính (O1;R1) ; (O2;R2) thứ tự là đường tròn nội tiếp tam giác ABC; ABH; ACH.
a: CMR: R + R1 + R2 = AH
b: R^2 = R1^2 + R2^2
c: Tính O1O2. Biết AB = 3cm; AC = 4cm.
3) Cho đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC thứ tự B;E;F. Qua E kẻ đường song song BC cắt AD, BF lần lượt tại M, N.
CMR: M là trung điểm EN
Cho nửa đường tròn (O), đường kính BC= 6cm. Trên nửa đường tròn lấy điểm A (A\(\ne\)B; C). Vẽ đường cao AH của \(\Delta ABC\)( H \(\in\)BC). Trên BC lấy điểm D sao cho BD=BA. Kẻ đường thẳng AD; gọi điểm E là hình chiếu của điểm C trên đường thẳng AD.
1) CMR: Tứ giác AHEC là nội tiếp.
2) Cm: DA.HE=DH.AD VÀ tam giác EHC cân.
3) Gọi R1; R2; R3 lần lượt là bán kính đường tròn nội tiếp các tám giác: ABH, ACH, ABC. Tìm vị trí của điểm A trên nửa đường tròn để R1 + R2+ R3 đật GTNN?
Cho tam giác ABC đều nội tiếp đường tròn tâm O, bán kính R. D là điểm di động trên cạnh BC, AD cắt (O) tại E. Gọi R1, R2 lần lượt là bán kính đường tròn ngoại tiếp các tam giác EBD, ECD. XĐ vị trí điểm D để R1.R2 đạt GTLN
giải thích vì sao:
1. cho tam giác ABC đường cao AH. (O;r), (O1;r1),(O2;r2) theo thứ tự là các ddwwongf tròn nội tếp tam giác ABC,ABH,ACH
Vì sao r/BC=r1/AB=r2/AC
2.(O;r) nội tiếp tam giác ABC. CÁc tieeps tuyến với (O) // với các cạnh tam giác cắt tgiac thành 3 tgiac nho. r1,r2,r3 là bkinh các đường tròn của các tgiac nhỏ đó.
vì sao r1+r2+r3 / r = P1+P2+P3 / P
Cho 2 đường tròn (O1; R1); (O2; R2) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài tại BC (B thuộc O1, C thuộc O2). Tiếp tuyến chung tại A cắt BC ở I.
a) CM tam giác ABC, tam giác IO1O2 vuông và BC = 2\(\sqrt{R1R2}\)
b) Gọi R là bán kính đường tròn O tiếp xúc với BC và tiếp xúc ngoài 2 đường tròn O1, O2. CM \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}\)
Cho nửa đường tròn O, đường kính BC, A là một điểm tùy ý trên nửa đường tròn. Hạ AH \(\perp\)BC. Gọi (O; R), (O1; R1), (O2; R2) lần lượt là các đường tròn nội tiếp tam giác ABC, ABH và ACH.
a/ Chứng minh AH = R + R1 +R2
b/ Chứng minh R2 = R12 + R22
c/ TÍnh O1, O2 theo R
d/ Xác định vị trí điểm A trên nửa đường tròn O sao cho diện tích tam giác ABC lớn nhất.
Cho đoạn thẳng AB và 1 điểm C trên AB với AC=a, BC=b. Đường thẳng đi qua C và vuông góc với AB cắt nửa đường tròn đường kính AB tại P. Dựng đường tròn tâm P bán kính r1, tiếp xúc với CA,CD và tiếp xúc với nửa đường tròn đường kính AB. Dựng đường tròn tâm Q bán kính r2 tiếp xúc với CB,CD và tiếp xúc với nửa đường tròn đường kính AB. Gọi r là bán kính đường tròn nội tiếp tam giác ABD
a/ Tính r1,r2 theo a,b
b/Tìm đẳng thức liên hệ giữa r,r1,r2
Cho tam giác ABC vuông tại A có đường cao AH. Gọi R1,R2,R3 lần lượt là bán kính đường tròn nội tiếp các tam giác ABC,ABH,ACH. Chứng minh rằng: R1+R2+R3= AH
1)cho tam giác ABC có AB=2AC và đường phân giác AD .gọi r ;r1;r2 lần lượt là bán kinhs đường tròn nội tiếp tam giác ABC ;ACD và ABD
cmr \(AD=\frac{p.r}{3}\left(\frac{1}{r1}+\frac{2}{r2}\right)-p\)(p là nửa chu vi tam giác ABC
2) cho đường tròn (O) và đỉnh A cố định bên ngoài đường tròn .kẻ tiếp tuyến AB và cát tuyến ADC (AC<AD).hỏi trọng tâm tam giác BCD chạy tên đường bào khi cát tuyến ADC thay đổi (AB cố định )
Cho đường tròn (O;R). Từ điểm A nằm bên ngoài đường tròn kẻ các tiếp tuyến AC, AC với đường tròn (B và C là các tiếp điểm). Gọi H là trung điểm của BC
a. Chứng minh 3 điểm A,B,C,O thuộc 1 đường tròn
b. Chứng minh 3 điểm A,H,O thẳng hàng.Kẻ đường kính BD của đường tròn (O;R). Vẽ CK vuông góc với BD. Chứng minh \(AC.CD=CK.AO\)
c. Gọi giao điểm của AO với đường tròn tâm O là N. Chứng minh N là tâm đường tròn nội tiếp tam giác ABC
d.Khi A di động trên tia By cố định, gọi M là trực tâm của tam giác ABC. Chứng minh M di động trên 1 đường cố định