1: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CD=CM+MD
nên CD=CA+DB
1: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CD=CM+MD
nên CD=CA+DB
. Cho nửa đường tròn đường kính AB = 2R. Từ A và B kẻ hai tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax , By lần lượt ở C và D. Các đường thẳng AD và BC cắt nhau tại N. Chứng minh:
1. AC + BD = CD
2. Góc COD = 900
3. AC.BD = 1/4 AB2
4. OC // BM
5. AB là tiếp tuyến của đường tròn đường kính CD.
6. MN vuông góc AB.
7. Xác định vị trí của M để chu vi tứ giác ACDB đạt giá trị nhỏ nhất.
Cho nửa đường tròn tâm O có đường kính AB . Gọi Ax , By là hai tiếp tuyến vẽ từ A đến B ( Ax , By và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB) . Qua điểm thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến thứ ba , tiếp tuyến này cắt Ax và By lần lượt tại điểm C và D 1. Chứng minh CD=AC+BD.
2. Gọi N là giao điểm của AD và BC chứng minh MN song song với AC.
Cho đường tròn (O) đường kính AB. Từ A và B kẻ hai tiếp tuyến Ax và By. Qua một điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D.các đường thẳng AD và BC cắt nhau ở N. Chứng minh:
a)CD=AC+BD
b)OC vuông góc với OD
c) MN // AC
d)CD.MN=CM.DB
3) cho nửa (O) đường kính \(AB=2R\). từ A và B kẻ 2 tiếp tuyến \(Ax,By\). qua M thuộc nửa đường tròn kẻ tiếp tuyến thứ ba cắt các tiếp tuyến \(Ax,By\) lần lượt tại C và D. các đường thẳng AD và BC cắt nhau tại N.
a) c/m: \(AC+BD=CD\)
b) c/m: \(\widehat{COD}=90^0\)
c) c/m: \(AC.BD=\dfrac{AB^2}{4}\)
d) c/m: \(OC//BM\)
giúp mk vs ạ mk cần gấp
Cho nửa đường tròn tâm O , đường kính AB = 2R , M là một điểm tùy ý trên nửa đường tròn ( M ≠ A ; B ). Kẻ hai tiếp tuyến Ax và By với nửa đường tròn . Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D
a) Chứng minh : CD = AC + BD và góc COD = 90 độ
c) OC cắt AM tại R , OD cắt BM tại F . Chứng minh EF = R
d) Tìm vị trí của M để CD có độ dài nhỏ nhất
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Qua một điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By theo thứ tự ở C và D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng: MN ⊥ AB
Cho nửa đường tròn đường kính AB=2R. Từ A và B kẻ 2 tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt các tiếp tuyến Ax, By lần lượt ở C và D. Các đường thẳng Ad và Bc cắt nhau tại N.
a, Chứng Minh: AC + BD = CD
b, Chứng minh: góc COD = \(^{90^0}\)
c, Chứng minh: AC.BD = \(\frac{AB^2}{4}\)
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Qua một điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ ba cắt Ax, By theo thứ tự ở C và D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng: MN = NH
Cho nửa đường tròn ( O ; AB/2 ) . Từ A , B kẻ hai tiếp tuyến Ax , By ( Ax , By cùng nằm trên một nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn ( O ; AB / 2 ) . Qua một điểm M thuộc nửa đường tròn này , kẻ tiếp tuyến thứ ba với nửa đường tròn ( O ; AB/2 ) cắt tiếp tuyến Ax , By lần lượt tại C và D . Gọi E và F lần lượt là giao điểm của các đường thẳng AM và OC ; MB và OD
1. Chứng minh : CD = AC + BD
2 . Chứng minh EF // AB
3. Gọi N là giao điểm của hai đường thẳng AD và BC
Chứng minh MN vuông góc AB