Nửa hình tròn APB quay quanh AB tạo ta hình cầu có bán kính R.
nên thể tích khối cầu tạo ra là:
Nửa hình tròn APB quay quanh AB tạo ta hình cầu có bán kính R.
nên thể tích khối cầu tạo ra là:
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
a, Chứng minh MON và APB là hai tam giác vuông đồng dạng
b, Chứng minh AM.BN = R 2
c, Tính tỉ số S M O N S A P B khi AM = R 2
d, Tính thể tích của hình do nửa hình tròn APB quay quanh AB sinh ra
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiêp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP với đường tròn tâm O (tiếp điểm P khác điểm A) cắt By tại N
a, Chứng minh các tam giác MON và APB đồng dạng
b, Chứng minh AM.BN = R 2
c, Tính tỉ số S M O N S A P B khi AM = R 2
d, Tính thể tích của hình do nửa hình tròn đường kính AB quay một vòng quanh AB sinh ra
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
a) Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.
b) Chứng minh AM ⋅ BN = R 2
c) Tính tỉ số S M O N S ∆ D B khi A M = R 2
d) Tính thể tích của hình do nửa hình tròn APB quay quanh AB sinh ra.
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
Chứng minh AM.BN = R2
Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
Tính tỉ số S M O N S A P B k h i A M = R 2
Cho nửa đường tròn (O) đường kính AB = 2R, N là điểm trên nửa đường tròn. Trên cùng một nửa mặt phẳng bờ AB, vẽ hai tiếp tuyến Ax và By và một tiếp tuyến tại N cắt hai tiếp tuyến Ax và By lần lượt tại C và D.
b) Chứng minh AB tiếp xúc với đường tròn đường kính CD.
Cho nửa đường tròn tâm O, đường kính AB=2R. Từ A và B vẽ các tiếp tuyến Ax, By. Từ một điểm M trên nửa hình tròn, vẽ tiếp tuyến d cắt Ax tại C, cắt By tại D. Vẽ hình gùm mk nka. Chứng minh:
a) Các điểm A, C, M , O cùng nằm trên một đường tròn
b) Tam giác COD vuông
c) AB là tiếp tuyến của đường tròn ngoại tiếp ∆COD
Cho nửa đường tròn (O; R) đường kính AB cố định. Trên cùng một nửa mặt phẳng bờ AB chứa đường tròn, vẽ các tiếp tuyến Ax, By với nửa đường tròn. Trên nửa đường tròn, lấy điểm C bất kì. Vẽ tiếp tuyến (O) tại C cắt Ax, By lần lượt tại D và E.
b) AC cắt DO tại M, BC cắt OE tại N. Tứ giác CMON là hình gì? Vì sao?