cho nửa đường tròn (o) đường kính ab lấy điểm c khác a sao cho ac bé hơn bc.tiếp tuyến tại b và c của nửa đường tròn cắt nhau tại d.đường thẳng ad cắt nửa đường tròn ở m.(m khác a).bc cắt do tại e.c,gọi h là hình chiếu vuông góc của c trên ab.cm:ad đi qua trung điểm của ch
Cho điểm C nằm trên nửa đường tròn (O,R), đường kính AB sao cho cung AC lớn hơn cung BC ( C khác B ). Đường thẳng vuông góc với đường kính AB tại O cắt dây AC tại D
a) Chứng minh tứ giác BCDO nội tiếp
b) Chứng minh AD.AC=AO.AB
c) Tiếp tuyến tại C của đường tròn cắt đường thẳng đi qua D và song song với AB tại điểm E. Tứ giác OEDA là hình gì?
d) Gọi H là hình chiếu của C trên AB. Hãy tìm vị trí điểm C để HD\(\perp\)AC
cho đường tròn (O) đường kính AB và điểm C nằm trên (O) (C khác A,B). lấy D thuộc dây BC (D khác BC) .tia AD cắt cung nhỏ BC tại E, tia AC cắt BE tại F.
1cm tứ giác FCDE nội tiếp
2 cm DA .DE=DB.DC
3cm góc CFD và góc OCB
Cho đường tròn (O) và một dây BC cố định khác với đường kính. Lấy A là điểm bất kì trên cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Kẻ các đường cao AE, CF của tam giác ABC và đường kính AD của đường tròn (O). Gọi N là hình chiếu vuông góc của C trên AD. 1) Chứng minh bốn điểm A, E, N, C cùng thuộc một đường tròn
Cho nửa đường tròn (O) đường kính AB, trên nửa đường tròn lấy c (C không trùng với A,B). gọi H là hình chiếu của C trên đường thẳng AB. Trên cung CB lấy điểm D ( D khác A,B). hai đường thẳng AD và CH cắt nhau tại E CMR AC2= AE.AD
Cho nửa đường tròn tâm (O) đường kính BC và điểm A trên nửa đường tròn (O) ( A khác B,C). Hạ AH vuông góc với BC (H thuộc BC) . I,K lần lượt đối xứng với H qua AB, AC. Đường thẳng IK và tia AC cắt tiếp tuyến kẻ từ B của (O) lần lượt tại M,N. Gọi E là giao điểm của IH và AB, F là giao điểm KH và AC.
a) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O )
b) Chứng minh: \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AN^2}\)
c) Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
d) Xác định vị trí điểm A trên nửa đường tròn để diện tích tứ giác BIKC lớn nhất
Cho nửa đường tròn tâm (O) đường kính BC và điểm A trên nửa đường tròn (O) ( A khác B,C). Hạ AH vuông góc với BC (H thuộc BC) . I,K lần lượt đối xứng với H qua AB, AC. Đường thẳng IK và tia AC cắt tiếp tuyến kẻ từ B của (O) lần lượt tại M,N. Gọi E là giao điểm của IH và AB, F là giao điểm KH và AC
Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC( E khác B và C), AE cắt CD tại F. Chứng minh
a) Bốn điểm B, E, F,I cùng thuộc một đường tròn.
b)AE.AF=AC2
c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp tam giác CÈ luôn thuộc một đường thẳng cố định